Partial Differential Equations 2020
 Solutions to CW 2

Gustav Holzegel

April 11, 2020

1 Week 5, Problem 5

(Fritz John, 4.2 (3)) Prove the weak maximum principle for solutions of the two-dimensional elliptic equation

$$
L u=a u_{x x}+2 b u_{x y}+c u_{y y}+2 d u_{x}+2 e u_{y}=0
$$

where a, b, c, d, e are continuous functions of x and y in $\bar{\Omega}$ and $a c-$ $b^{2}>0$ (ellipticity) as well as $a>0$ hold (on $\bar{\Omega}$). HINT: Prove it first under the strict condition $L u>0$, then use $u+\epsilon v$ for $v=$ $\exp \left[M\left(x-x_{0}\right)^{2}+M\left(y-y_{0}\right)^{2}\right]$ with appropriate M, x_{0}, y_{0}.

Assume first the strict inequality $L u>0$. Suppose there is an interior maximum at $\left(x_{0}, y_{0}\right) \in \Omega$. Then $u_{x}\left(x_{0}, y_{0}\right)=u_{y}\left(x_{0}, y_{0}\right)=0$ and the Hessian

$$
\operatorname{Hess} \mathbf{u}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)=\left(\begin{array}{ll}
u_{x x}\left(x_{0}, y_{0}\right) & u_{x y}\left(x_{0}, y_{0}\right) \\
u_{x y}\left(x_{0}, y_{0}\right) & u_{y y}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

is non-positive definite (which means its eigenvalues $\lambda_{i} \leq 0$), i.e.

$$
\begin{gather*}
u_{x x}\left(x_{0}, y_{0}\right)+u_{y y}\left(x_{0}, y_{0}\right) \leq 0 \tag{1}\\
u_{x x} u_{y y}\left(x_{0}, y_{0}\right)-\left(u_{x y}\right)^{2}\left(x_{0}, y_{0}\right) \geq 0 \tag{2}
\end{gather*}
$$

On the other hand, the condition $L u\left(x_{0}, y_{0}\right)>0$ gives

$$
\begin{equation*}
a u_{x x}\left(x_{0}, y_{0}\right)+2 b u_{x y}\left(x_{0}, y_{0}\right)+c u_{y y}\left(x_{0}, y_{0}\right)>0 \tag{3}
\end{equation*}
$$

We see that $u_{x x}\left(x_{0}, y_{0}\right)>0$ is already inconsistent with (1) and (2) so $u_{x x}\left(x_{0}, y_{0}\right) \leq$ 0 and similarly $u_{y y}\left(x_{0}, y_{0}\right) \leq 0$. But then we can write (3) as

$$
\begin{align*}
& a\left(\sqrt{-u_{x x}}-\frac{|b|}{a} \sqrt{-u_{y y}}\right)^{2}+\left(c-\frac{b^{2}}{a}\right)\left(-u_{y y}\right) \\
& \quad+2|b| \sqrt{u_{x x} u_{y y}\left(x_{0}, y_{0}\right)}+2 b u_{x y}\left(x_{0}, y_{0}\right)<0 \tag{4}
\end{align*}
$$

which yields the desired contradiction using (2) and the fact that $a c-b^{2}>0$ as well as $a>0$. So in case of the strict inequality $L u>0$ the maximum can only be assumed on the boundary. For the non-strict case look at (this is easier than the hint)

$$
v_{\epsilon}(x, y)=u(x, y)+\epsilon \cdot e^{\lambda x}
$$

and compute

$$
L v_{\epsilon} \geq \epsilon e^{\lambda x}\left(a \lambda^{2}+2 d \lambda\right)>0
$$

for sufficiently large λ (now fixed) and any $\epsilon>0$.
Applying the maximum principle to v_{ϵ} yields

$$
\max _{\bar{\Omega}}\left(u(x, y)+\epsilon \cdot e^{\lambda x}\right)=\max _{\partial \Omega}\left(u(x, y)+\epsilon \cdot e^{\lambda x}\right)
$$

We deduce

$$
\max _{\bar{\Omega}} u(x, y)+\epsilon \min _{\bar{\Omega}} e^{\lambda x} \leq \max _{\partial \Omega} u(x, y)+\epsilon \max _{\partial \Omega} e^{\lambda x}
$$

Since Ω is bounded $\max _{\bar{\Omega}} e^{\lambda x}$ is bounded and we can let $\epsilon \rightarrow 0$ to obtain

$$
\max _{\bar{\Omega}} u(x, y) \leq \max _{\partial \Omega} u(x, y)
$$

The reverse inequality is trivial and hence the maximum principle has been established.

2 Week 5, Problem 6

(Harnack's inequality) Let $u \in C^{2}$ for $|x|<a$ and $u \in C^{0}$ for $|x| \leq a$. Let also $u \geq 0$ and $\Delta u=0$ hold for $|x|<a$ (in other words, u is a non-negative harmonic function). Show that for $|\xi|<a$

$$
\frac{a^{n-2}(a-|\xi|)}{(a+|\xi|)^{n-1}} u(0) \leq u(\xi) \leq \frac{a^{n-2}(a+|\xi|)}{(a-|\xi|)^{n-1}} u(0)
$$

Discuss the meaning of this estimate. What can you say for arbitrary regions?

We use the formula proven in lectures

$$
u(\xi)=\int_{|x|=a} \frac{a^{d-2}}{a^{d-1} \omega_{d}} \frac{a^{2}-|\xi|^{2}}{|x-\xi|^{d}} u(x) d S_{x}
$$

together with the easily established inequalities for x with $|x|=a$ (draw a picture!)

$$
a^{d-2} \frac{a-|\xi|}{(a+|\xi|)^{d-1}} \leq a^{d-2} \frac{a^{2}-|\xi|^{2}}{|x-\xi|^{d}} \leq a^{d-2} \frac{a+|\xi|}{(a-|\xi|)^{d-1}} .
$$

For the upper bound this produces

$$
\begin{aligned}
u(\xi) & =\int_{|x|=a} \frac{a^{d-2}}{a^{d-1} \omega_{d}} \frac{a^{2}-|\xi|^{2}}{|x-\xi|^{d}} u(x) d S_{x} \\
& \leq a^{d-2} \frac{a+|\xi|}{(a-|\xi|)^{d-1}} \int_{|x|=a} \frac{1}{a^{d-1} \omega_{d}} u(x) d S_{x}=a^{d-2} \frac{a+|\xi|}{(a-|\xi|)^{d-1}} u(0),
\end{aligned}
$$

with the last bound following from the mean value property of harmonic functions. The lower bound is of course entirely analogous.

Note that this implies that in $B_{a}(0)$ we have

$$
\frac{1}{C} u(y) \leq u(x) \leq C u(y)
$$

for all $x, y \in B_{a}(0)$ with the constant depending only on how close x and y are to the boundary of $B_{a}(0)$. In particular, on any compact subset V of the open ball $B_{a}(0)$ we can estimate the maximum of u by the minimum of u in V. This is a manifestation of the averaging effects of the Laplacian.

See the revision sheet for arbitrary regions (the idea is of course to cover them with balls!)!

3 Week 6, Problem 3

(Best constant in Poincare's inequality; F. John Chapter 5) Show that if there exists a function $u \in C^{2}(\bar{\Omega})$ vanishing for $\partial \Omega$ for which the quotient

$$
\frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}}
$$

reaches its smallest value λ, then u is an eigenfunction to the eigenvalue λ, i.e. $\Delta u+\lambda u=0$ in Ω. In fact λ must be the smallest eigenvalue belonging to an eigenfunction in $C^{2}(\bar{\Omega})$.

Fix a $\phi \in C_{0}^{\infty}(\Omega)$. The function

$$
\Psi:(-\epsilon, \epsilon) \ni t \rightarrow \frac{\int_{\Omega}|\nabla(u+t \phi)|^{2}}{\int_{\Omega}(u+t \phi)^{2}}
$$

with u the minimiser of the assumptions is well defined for sufficiently small $\epsilon>0$ (as $u+t \phi$ is non-trivial) and by the general result of Week 5 (on interchanging the derivative and the integral) Ψ is also differentiable. The assumptions of the problem imply that Ψ has a minimum at $t=0$ and $\Psi(0)=\lambda>0$. Hence $\left.\frac{d}{d t} \Psi\right|_{t=0}=0$ and we compute

$$
\begin{align*}
0=\left.\frac{d}{d t}\left(\frac{\int_{\Omega}|\nabla(u+t \phi)|^{2}}{\int_{\Omega}(u+t \phi)^{2}}\right)\right|_{t=0} & =2 \frac{\int_{\Omega}\langle\nabla u, \nabla \phi\rangle}{\int_{\Omega} u^{2}}-2 \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}} \frac{\int_{\Omega} u \phi}{\int_{\Omega} u^{2}} \\
& =-2 \frac{\int_{\Omega}(\Delta u+\lambda u) \phi}{\int_{\Omega} u^{2}} \tag{5}
\end{align*}
$$

where we have integrated by parts using that ϕ vanishes on the boundary of Ω. Since $\phi \in C_{0}^{\infty}(\Omega)$ was arbitrary, the right hand side has to be zero for any test function $\phi \in C_{0}^{\infty}(\Omega)$ and this implies (since $\Delta u+\lambda u$ is continuous) that

$$
\Delta u+\lambda u=0
$$

If we had a smaller eigenvalue, i.e. $\Delta u+\mu u=0$ for $\mu<\lambda$ and $u \in C^{2}(\bar{\Omega})$ non-trivial, we would have (multiplying the equation by u and integrating by parts) that

$$
\int_{\Omega}|\nabla u|^{2}=\mu \int_{\Omega} u^{2}
$$

which contradicts the fact that the minimum value of the quotient in the exercise is λ.

4 Week 6, Problem 4

Let $n=3$ and Ω be the ball $|x|<\pi$. Show that a solution u of $\Delta u+u=w(x)$ with vanishing boundary values can only exist if

$$
\int_{\Omega} w(x) \frac{\sin |x|}{|x|} d x=0
$$

An easy computation shows that the homogeneous adjoint problem is given by $\Delta v+v=0$ and $v=0$ on $\partial \Omega$. Going to polar coordinates we easily check that

$$
\Delta \frac{\sin |x|}{|x|}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \frac{\sin r}{r}\right)=\frac{1}{r^{2}} \partial_{r}(-\sin r+r \cos r)=-\frac{\sin r}{r}
$$

and hence that $\frac{\sin |x|}{|x|}$ is a solution to the homogeneous adjoint problem. (Note $\frac{\sin |x|}{|x|}$ is smooth at the origin and vanishes on the boundary $r=\pi$.) By the Fredholm alternative, the original inhomogeneous problem can only have a solution if the right hand side $w(x)$ is L^{2}-orthogonal to the kernel of the adjoint problem and this yields precisely the condition stated.

Remark: To see that $\tilde{u}(x)=\frac{\sin |x|}{|x|}$ is a legitimate solution to the adjoint problem, we need to check that $\tilde{u} \in H_{0}^{1}(\Omega)$. First note that $\frac{\sin |x|}{|x|}$ is smooth on \mathbb{R}^{3}, including the origin, so that certainly $\tilde{u} \in H^{1}(\Omega)$. Note that the function vanishes at the boundary $r=\pi$. Let $\tilde{\chi}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a smooth function such that $\tilde{\chi}(r)=0$ when $r \leq 1$ and $\tilde{\chi}(r)=r$ when $r \geq 2$. Define $\chi_{\varepsilon}(x)=\varepsilon \tilde{\chi}\left(\frac{|x|}{\varepsilon}\right)$ for $x \neq 0$ and $\chi_{\varepsilon}(0)=0$ and note this is a smooth function on \mathbb{R}^{3}.

Set $\tilde{u}_{\varepsilon}=\chi_{\varepsilon}(\tilde{u})$. We claim that $\tilde{u}_{\varepsilon} \in C_{c}^{\infty}(\Omega)$ for each $\varepsilon>0$. As a composition of smooth functions, \tilde{u}_{ε} is smooth. Note that by definition $\tilde{u}_{\varepsilon}=0$ whenever $|\tilde{u}|<\varepsilon$. Since \tilde{u} vanishes on the boundary and Ω is pre-compact, this will be true in a neighbourhood of $\partial \Omega$. In fact, $\{x \in \Omega:|\tilde{u}|<\varepsilon\} \subset\{\pi-\varepsilon \leq|x| \leq \pi\}$
which directly implies that $\operatorname{supp}\left(\tilde{u}_{\varepsilon}\right) \subset B_{\pi-\varepsilon}(0)$ which is compactly contained in Ω. Finally note that in the region $\{x \in \Omega: \tilde{u}(x)>2 \varepsilon\}, \tilde{u}_{\varepsilon}=\tilde{u}$, so that $\left\{x \in \Omega: \tilde{u}_{\varepsilon}(x) \neq \tilde{u}(x)\right\} \subset\{\pi-2 \varepsilon \leq|x| \leq \pi\}$.

To show that indeed $\tilde{u} \in H_{0}^{1}(\Omega)$, it suffices to prove that $\tilde{u}_{\varepsilon} \rightarrow u$ in $H^{1}(\Omega)$. Using that $\left|\nabla \chi_{\varepsilon}\right| \leq C$ and the fact that \tilde{u}_{ε} and \tilde{u} agree everywhere except an annulus of size ε around the boundary, we find

$$
\begin{equation*}
\left\|\tilde{u}-\tilde{u}_{\varepsilon}\right\|_{H^{1}(\Omega)} \leq C \sup _{x \in \Omega \backslash B_{\pi-2 \varepsilon}}(|\tilde{u}(x)|+|\nabla \tilde{u}(x)|) \mathcal{L}^{n}\left(\Omega \backslash B_{\pi-2 \varepsilon}\right) \xrightarrow{\varepsilon \rightarrow 0} 0 \tag{6}
\end{equation*}
$$

5 Week 6, Problem 6

Prove the following basic version of the Banach Alaoglu theorem (which we used in connection with the difference quotients): Let (u_{k}) be a bounded sequence in a separable Hilbert space H, i.e. $\left\|u_{k}\right\|_{H} \leq C$. Then there exists a subsequence which converges weakly in H. Hint: Use the following outline

1. Pick an ONB (e_{k}) and use a diagonal argument to show that for a subsequence of the $\left(u_{k}\right)$, denoted $\left(u_{n}^{(n)}\right)$ (arising from a Cantor diagonal argument) we have that

$$
\left\langle u_{n}^{(n)}, e_{k}\right\rangle \rightarrow v_{k} \in \mathbb{R} \quad \text { holds for all } e_{k}
$$

2. Show that $\sum_{k=1}^{\infty}\left|v_{k}\right|^{2}<\infty$ and hence $v=\sum_{k} v_{k} e_{k} \in H$.
3. Show that $u_{n}^{(n)} \rightharpoonup v$.

Step 1: We use a diagonal argument to show that for a subsequence of the $\left(u_{k}\right)$, denoted $\left(u_{n}^{(n)}\right)$ (arising from a Cantor diagonal argument) we have that

$$
\left\langle u_{n}^{(n)}, e_{k}\right\rangle \rightarrow v_{k} \in \mathbb{R}
$$

holds for all e_{k}. Indeed, by Bolzano-Weierstrass we can find a subsequence $\left(u_{n}^{(1)}\right)$ of $\left(u_{n}\right)$ such that $\left\langle u_{n}^{(1)}, e_{1}\right\rangle \rightarrow v_{1}$ as $n \rightarrow \infty$ for some $v_{1} \in \mathbb{R}$. Next we choose a subsequence of $\left(u_{n}^{(1)}\right)$, denoted $\left(u_{n}^{(2)}\right)$ which is such that $\left\langle u_{n}^{(2)}, e_{2}\right\rangle \rightarrow v_{2}$ as $n \rightarrow \infty$ for some $v_{2} \in \mathbb{R}$. Continuing in this way and then choosing finally the diagonal sequence $\left(u_{n}^{(n)}\right)$ we have that

$$
\left\langle u_{n}^{(n)}, e_{k}\right\rangle \rightarrow v_{k}
$$

for all k.
Step 2: We next show that $\sum_{k=1}^{\infty}\left|v_{k}\right|^{2}<\infty$. To do this we compute

$$
\sum_{k=1}^{K}\left|v_{k}\right|^{2}=\lim _{n \rightarrow \infty} \sum_{k=1}^{K} v_{k}\left\langle u_{n}^{(n)}, e_{k}\right\rangle=\lim _{n \rightarrow \infty}\left\langle u_{n}^{(n)}, \sum_{k=1}^{K} v_{k} e_{k}\right\rangle \leq \limsup _{n \rightarrow \infty}\left\|u_{n}^{(n)}\right\| \sqrt{\sum_{k=1}^{K}\left|v_{k}\right|^{2}}
$$

and hence

$$
\sum_{k=1}^{K}\left|v_{k}\right|^{2} \leq C
$$

for all K and therefore $v_{k} \in \ell^{2}$ and hence that $v=\sum_{k=1}^{\infty} v_{k} e_{k} \in H$ (recall the sum converges iff $v_{k} \in \ell^{2}$).

Step 3: We show that $u_{n}^{(n)} \rightharpoonup v$, i.e. that for any $\phi=\sum_{k} \phi_{k} e_{k} \in H$ we have that

$$
\lim _{n \rightarrow \infty}\left\langle u_{n}^{(n)}-v, \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle u_{n}^{(n)}-v, \sum_{k=1}^{\infty} \phi_{k} e_{k}\right\rangle=0
$$

To see this, let $\epsilon>0$ be prescribed. We first fix K large (independently of n) such that

$$
\left|\left\langle u_{n}^{(n)}-v, \sum_{k=K+1}^{\infty} \phi_{k} e_{k}\right\rangle\right| \leq\left\|u_{n}^{(n)}-v\right\|\left\|\sum_{k=K+1}^{\infty} \phi_{k} e_{k}\right\| \leq 2 C \sum_{k=K+1}^{\infty}\left|\phi_{k}\right|^{2}<\frac{\epsilon}{2} .
$$

Next we choose n large such that

$$
\left\langle u_{n}^{(n)}-v, \sum_{k=1}^{K} \phi_{k} e_{k}\right\rangle=\sum_{k=1}^{K} \phi_{k}\left\langle u_{n}^{(n)}-v, e_{k}\right\rangle<\frac{\epsilon}{2}
$$

This is possible because K has been fixed and every summand in this finite sum goes to zero in view of $\left\langle u_{n}^{(n)}-v, e_{k}\right\rangle \rightarrow 0$ for all k. Adding the two terms finishes the proof.

Remark. The above proof is for a Hilbert space over \mathbb{R} (which covers the spaces used in lectures). The proof for \mathbb{C} is entirely analogous.

