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1 Week 5, Problem 5

(Fritz John, 4.2 (3)) Prove the weak maximum principle for solutions
of the two-dimensional elliptic equation

Lu = auxx + 2buxy + cuyy + 2dux + 2euy = 0

where a, b, c, d, e are continuous functions of x and y in Ω̄ and ac −
b2 > 0 (ellipticity) as well as a > 0 hold (on Ω̄). HINT: Prove
it first under the strict condition Lu > 0, then use u + εv for v =

exp
[
M (x− x0)

2
+M (y − y0)

2
]

with appropriate M , x0, y0.

Assume first the strict inequality Lu > 0. Suppose there is an interior
maximum at (x0, y0) ∈ Ω. Then ux (x0, y0) = uy (x0, y0) = 0 and the Hessian

Hess u (x0,y0) =

(
uxx (x0, y0) uxy (x0, y0)
uxy (x0, y0) uyy (x0, y0)

)
is non-positive definite (which means its eigenvalues λi ≤ 0), i.e.

uxx (x0, y0) + uyy (x0, y0) ≤ 0 (1)

uxxuyy (x0, y0)− (uxy)
2

(x0, y0) ≥ 0 (2)

On the other hand, the condition Lu (x0, y0) > 0 gives

auxx (x0, y0) + 2buxy (x0, y0) + cuyy (x0, y0) > 0 . (3)

We see that uxx (x0, y0) > 0 is already inconsistent with (1) and (2) so uxx (x0, y0) ≤
0 and similarly uyy (x0, y0) ≤ 0. But then we can write (3) as

a

(√
−uxx −

|b|
a

√
−uyy

)2

+

(
c− b2

a

)
(−uyy)

+2|b|
√
uxxuyy (x0, y0) + 2buxy (x0, y0) < 0 , (4)

1



which yields the desired contradiction using (2) and the fact that ac − b2 > 0
as well as a > 0. So in case of the strict inequality Lu > 0 the maximum can
only be assumed on the boundary. For the non-strict case look at (this is easier
than the hint)

vε (x, y) = u (x, y) + ε · eλx

and compute
Lvε ≥ εeλx

(
aλ2 + 2dλ

)
> 0

for sufficiently large λ (now fixed) and any ε > 0.
Applying the maximum principle to vε yields

max
Ω

(
u (x, y) + ε · eλx

)
= max

∂Ω

(
u (x, y) + ε · eλx

)
.

We deduce

max
Ω

u (x, y) + εmin
Ω
eλx ≤ max

∂Ω
u (x, y) + εmax

∂Ω
eλx

Since Ω is bounded maxΩ e
λx is bounded and we can let ε→ 0 to obtain

max
Ω

u (x, y) ≤ max
∂Ω

u (x, y) .

The reverse inequality is trivial and hence the maximum principle has been
established.

2 Week 5, Problem 6

(Harnack’s inequality) Let u ∈ C2 for |x| < a and u ∈ C0 for |x| ≤ a.
Let also u ≥ 0 and ∆u = 0 hold for |x| < a (in other words, u is a
non-negative harmonic function). Show that for |ξ| < a

an−2 (a− |ξ|)
(a+ |ξ|)n−1 u (0) ≤ u (ξ) ≤ an−2 (a+ |ξ|)

(a− |ξ|)n−1 u (0)

Discuss the meaning of this estimate. What can you say for arbitrary
regions?

We use the formula proven in lectures

u(ξ) =

∫
|x|=a

ad−2

ad−1ωd

a2 − |ξ|2

|x− ξ|d
u(x)dSx

together with the easily established inequalities for x with |x| = a (draw a
picture!)

ad−2 a− |ξ|
(a+ |ξ|)d−1

≤ ad−2 a
2 − |ξ|2

|x− ξ|d
≤ ad−2 a+ |ξ|

(a− |ξ|)d−1
.
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For the upper bound this produces

u(ξ) =

∫
|x|=a

ad−2

ad−1ωd

a2 − |ξ|2

|x− ξ|d
u(x)dSx

≤ ad−2 a+ |ξ|
(a− |ξ|)d−1

∫
|x|=a

1

ad−1ωd
u(x)dSx = ad−2 a+ |ξ|

(a− |ξ|)d−1
u(0) ,

with the last bound following from the mean value property of harmonic func-
tions. The lower bound is of course entirely analogous.

Note that this implies that in Ba(0) we have

1

C
u(y) ≤ u(x) ≤ Cu(y) .

for all x, y ∈ Ba(0) with the constant depending only on how close x and y are
to the boundary of Ba(0). In particular, on any compact subset V of the open
ball Ba(0) we can estimate the maximum of u by the minimum of u in V . This
is a manifestation of the averaging effects of the Laplacian.

See the revision sheet for arbitrary regions (the idea is of course to cover
them with balls!)!

3 Week 6, Problem 3

(Best constant in Poincare’s inequality; F. John Chapter 5) Show
that if there exists a function u ∈ C2

(
Ω
)

vanishing for ∂Ω for which
the quotient ∫

Ω
|∇u|2∫
Ω
u2

reaches its smallest value λ, then u is an eigenfunction to the eigen-
value λ, i.e. ∆u+λu = 0 in Ω. In fact λ must be the smallest eigenvalue
belonging to an eigenfunction in C2

(
Ω
)
.

Fix a φ ∈ C∞0 (Ω). The function

Ψ : (−ε, ε) 3 t→
∫

Ω
|∇(u+ tφ)|2∫
Ω

(u+ tφ)2

with u the minimiser of the assumptions is well defined for sufficiently small ε > 0
(as u+ tφ is non-trivial) and by the general result of Week 5 (on interchanging
the derivative and the integral) Ψ is also differentiable. The assumptions of
the problem imply that Ψ has a minimum at t = 0 and Ψ(0) = λ > 0. Hence
d
dtΨ|t=0 = 0 and we compute

0 =
d

dt

(∫
Ω
|∇(u+ tφ)|2∫
Ω

(u+ tφ)2

) ∣∣∣∣∣
t=0

= 2

∫
Ω
〈∇u,∇φ〉∫

Ω
u2

− 2

∫
Ω
|∇u|2∫
Ω
u2

∫
Ω
uφ∫

Ω
u2

= −2

∫
Ω

(∆u+ λu)φ∫
Ω
u2

(5)
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where we have integrated by parts using that φ vanishes on the boundary of Ω.
Since φ ∈ C∞0 (Ω) was arbitrary, the right hand side has to be zero for any test
function φ ∈ C∞0 (Ω) and this implies (since ∆u+ λu is continuous) that

∆u+ λu = 0

If we had a smaller eigenvalue, i.e. ∆u + µu = 0 for µ < λ and u ∈ C2
(
Ω̄
)

non-trivial, we would have (multiplying the equation by u and integrating by
parts) that ∫

Ω

|∇u|2 = µ

∫
Ω

u2

which contradicts the fact that the minimum value of the quotient in the exercise
is λ.

4 Week 6, Problem 4

Let n = 3 and Ω be the ball |x| < π. Show that a solution u of
∆u+ u = w (x) with vanishing boundary values can only exist if∫

Ω

w (x)
sin |x|
|x|

dx = 0

An easy computation shows that the homogeneous adjoint problem is given
by ∆v + v = 0 and v = 0 on ∂Ω. Going to polar coordinates we easily check
that

∆
sin |x|
|x|

=
1

r2
∂r

(
r2∂r

sin r

r

)
=

1

r2
∂r (− sin r + r cos r) = − sin r

r

and hence that sin |x|
|x| is a solution to the homogeneous adjoint problem. (Note

sin |x|
|x| is smooth at the origin and vanishes on the boundary r = π.) By the

Fredholm alternative, the original inhomogeneous problem can only have a so-
lution if the right hand side w(x) is L2-orthogonal to the kernel of the adjoint
problem and this yields precisely the condition stated.

Remark: To see that ũ(x) = sin |x|
|x| is a legitimate solution to the adjoint

problem, we need to check that ũ ∈ H1
0 (Ω). First note that sin |x|

|x| is smooth on

R3, including the origin, so that certainly ũ ∈ H1(Ω). Note that the function
vanishes at the boundary r = π. Let χ̃ : R+ → R be a smooth function such

that χ̃(r) = 0 when r ≤ 1 and χ̃(r) = r when r ≥ 2. Define χε(x) = εχ̃
(
|x|
ε

)
for x 6= 0 and χε(0) = 0 and note this is a smooth function on R3.

Set ũε = χε(ũ). We claim that ũε ∈ C∞c (Ω) for each ε > 0. As a composition
of smooth functions, ũε is smooth. Note that by definition ũε = 0 whenever
|ũ| < ε. Since ũ vanishes on the boundary and Ω is pre-compact, this will be
true in a neighbourhood of ∂Ω. In fact, {x ∈ Ω : |ũ| < ε} ⊂ {π − ε ≤ |x| ≤ π}
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which directly implies that supp(ũε) ⊂ Bπ−ε(0) which is compactly contained
in Ω. Finally note that in the region {x ∈ Ω : ũ(x) > 2ε}, ũε = ũ, so that
{x ∈ Ω : ũε(x) 6= ũ(x)} ⊂ {π − 2ε ≤ |x| ≤ π}.

To show that indeed ũ ∈ H1
0 (Ω), it suffices to prove that ũε → u in H1(Ω).

Using that |∇χε| ≤ C and the fact that ũε and ũ agree everywhere except an
annulus of size ε around the boundary, we find

‖ũ− ũε‖H1(Ω) ≤ C sup
x∈Ω\Bπ−2ε

(|ũ(x)|+ |∇ũ(x)|)Ln(Ω \Bπ−2ε)
ε→0−−−→ 0 (6)

5 Week 6, Problem 6

Prove the following basic version of the Banach Alaoglu theorem
(which we used in connection with the difference quotients): Let (uk)
be a bounded sequence in a separable Hilbert space H, i.e. ‖uk‖H ≤ C.
Then there exists a subsequence which converges weakly in H. Hint:
Use the following outline

1. Pick an ONB (ek) and use a diagonal argument to show that for

a subsequence of the (uk), denoted (u
(n)
n ) (arising from a Cantor

diagonal argument) we have that

〈u(n)
n , ek〉 → vk ∈ R holds for all ek.

2. Show that
∑∞
k=1 |vk|2 <∞ and hence v =

∑
k vkek ∈ H.

3. Show that u
(n)
n ⇀ v.

Step 1: We use a diagonal argument to show that for a subsequence of the

(uk), denoted (u
(n)
n ) (arising from a Cantor diagonal argument) we have that

〈u(n)
n , ek〉 → vk ∈ R

holds for all ek. Indeed, by Bolzano-Weierstrass we can find a subsequence

(u
(1)
n ) of (un) such that 〈u(1)

n , e1〉 → v1 as n → ∞ for some v1 ∈ R. Next we

choose a subsequence of (u
(1)
n ), denoted (u

(2)
n ) which is such that 〈u(2)

n , e2〉 → v2

as n → ∞ for some v2 ∈ R. Continuing in this way and then choosing finally

the diagonal sequence (u
(n)
n ) we have that

〈u(n)
n , ek〉 → vk

for all k.
Step 2: We next show that

∑∞
k=1 |vk|2 <∞. To do this we compute

K∑
k=1

|vk|2 = lim
n→∞

K∑
k=1

vk〈u(n)
n , ek〉 = lim

n→∞
〈u(n)
n ,

K∑
k=1

vkek〉 ≤ lim sup
n→∞

‖u(n)
n ‖

√√√√ K∑
k=1

|vk|2
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and hence
K∑
k=1

|vk|2 ≤ C

for all K and therefore vk ∈ `2 and hence that v =
∑∞
k=1 vkek ∈ H (recall the

sum converges iff vk ∈ `2).

Step 3: We show that u
(n)
n ⇀ v, i.e. that for any φ =

∑
k φkek ∈ H we have

that

lim
n→∞

〈u(n)
n − v, φ〉 = lim

n→∞
〈u(n)
n − v,

∞∑
k=1

φkek〉 = 0 .

To see this, let ε > 0 be prescribed. We first fix K large (independently of n)
such that

|〈u(n)
n − v,

∞∑
k=K+1

φkek〉| ≤ ‖u(n)
n − v‖‖

∞∑
k=K+1

φkek‖ ≤ 2C

∞∑
k=K+1

|φk|2 <
ε

2
.

Next we choose n large such that

〈u(n)
n − v,

K∑
k=1

φkek〉 =

K∑
k=1

φk〈u(n)
n − v, ek〉 <

ε

2

This is possible because K has been fixed and every summand in this finite sum

goes to zero in view of 〈u(n)
n −v, ek〉 → 0 for all k. Adding the two terms finishes

the proof.

Remark. The above proof is for a Hilbert space over R (which covers the
spaces used in lectures). The proof for C is entirely analogous.
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