Measure and Integration: Example Sheet 8

Fall 2016 [G. Holzegel]

March 13, 2017

1 Absolute Continuity I

a) Prove that if $F:[a, b] \rightarrow \mathbb{R}$ is Lipschitz, then it is absolutely continuous.
b) Give an example of an absolutely continuous function $F:[a, b] \rightarrow \mathbb{R}$ that is not Lipschitz.

2 The Cantor-Lebesgue function revisited one more time

Recall that we constructed the Cantor-Lebesgue function in Question 1 of Sheet 1 as a surjective increasing function $F: \mathfrak{C} \rightarrow[0,1]$. In Question 5 of Sheet 5 we extended it to a continuous function $f:[0,1] \rightarrow[0,1]$. Here we give an alternative way to construct it (cf. Stein-Shakarchi pp.126-127). We recall the notation

$$
\mathfrak{C}=\bigcap_{k=0}^{\infty} C_{k}
$$

and that each C_{k} consists of 2^{k} disjoint intervals of length $(1 / 3)^{k}$. We construct a sequence of functions $\left(g_{n}\right)$ as follows. We let $g_{1}, g_{2}:[0,1] \rightarrow[0,1]$ be the continuous increasing piecewise linear functions defined by

$$
\begin{align*}
& g_{1}(x)=\left\{\begin{array}{cl}
0 & \text { if } x=0 \\
1 / 2 & \text { if } 1 / 3 \leq x \leq 2 / 3 \\
1 & \text { if } x=1, \\
\text { linear } & \text { on } C_{1}, \text { i.e. in }(0,1 / 3) \text { and }(2 / 3,1)
\end{array}\right. \\
& g_{2}(x)=\left\{\begin{array}{cl}
0 & \text { if } x=0 \\
1 / 4 & \text { if } 1 / 9 \leq x \leq 2 / 9 \\
1 / 2 & \text { if } 1 / 3 \leq x \leq 2 / 3 \\
3 / 4 & \text { if } 7 / 9 \leq x \leq 8 / 9 \\
1 & \text { if } x=1 \\
\text { linear } & \text { on } C_{2}, \text { i.e. in }(0,1 / 9) \text { and }(2 / 9,1 / 3) \text { and }(2 / 3,7 / 9) \text { and }(8 / 9,1)
\end{array}\right. \tag{1}
\end{align*}
$$

In general, to obtain g_{n} from g_{n-1} one replaces each strictly increasing linear piece on the 2^{n-1} intervals of C_{n-1} by a piecewise linear function, which assumes the constant average value on the mid-third interval of C_{n} and is again linear on the remaining pieces (which are precisely the disjoint intervals of C_{n}).
a) Write down an expression for the general $g_{n}(x)$. Show that the sequence of functions converges to a continuous limit and that this limit is precisely the Cantor-Lebesgue function $f:[0,1] \rightarrow[0,1]$ constructed on Example Sheet 3.
b) Verify directly from the definition of absolute continuity that the Cantor-Lebesgue function is not absolutely continuous. (Recall that we have already shown this indirectly since the identity $\int_{a}^{b} F^{\prime}(x) d x=$ $F(b)-F(a)$ fails for the Cantor-Lebesgue function.)

3 Absolute Continuity II (Problem 19 from [SS])

Show that if $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, then
a) f maps sets of measure zero to sets of measure 0 .
b) f maps measurable sets to measurable sets.

4 Absolute Continuity III

If F and G are absolutely continuous on $[a, b]$, then so is the product $F G$ and the integration by parts formula

$$
\int_{a}^{b}\left(F G^{\prime}+G F^{\prime}\right)(x) d x=F(b) G(b)-F(a) G(a)
$$

holds.

