Measure and Integration: Example Sheet 7

Fall 2016 [G. Holzegel]

March 12, 2017

1 Hardy-Littlewood maximal function I (Exercise 4 in [SS])

a) Prove that if f is integrable on \mathbb{R}^d and not identically zero, then

$$f^{\star}\left(x\right) \ge \frac{c}{|x|^{d}}$$

holds for some constant c > 0 and all $|x| \ge 1$. Conclude that f^* is not integrable on \mathbb{R}^d .

b) Consider an f supported on the unit ball with $\int |f| = 1$. Conclude that

$$m\left(\left\{x \mid f^{\star}\left(x\right) > \alpha\right\}\right) \ge \frac{c'}{\alpha}$$

holds for some constant c' > 0 and all sufficiently small α . Remark: This shows that the weak-type inequality we proved in class, $m(\{x \mid f^*(x) > \alpha\}) \leq \frac{C}{\alpha}$ for all α , cannot be improved.

2 Hardy-Littlewood maximal function II (Exercise 5 in [SS])

Consider the function on \mathbb{R} defined by

$$f(x) = \begin{cases} \frac{1}{|x|(\log 1/|x|)^2} & \text{if } |x| \le 1/2\\ 0 & \text{otherwise.} \end{cases}$$

- a) Verify that f is integrable.
- b) Establish the inequality

$$f^{\star}(x) \ge \frac{c}{|x|(\log 1/|x|)}$$

for some constant c > 0 and all $|x| \leq \frac{1}{2}$. Conclude that the maximal function f^* is not locally integrable.

3 Points of Lebesgue density

Let $E \subset \mathbb{R}^d$ be a measurable set. We say that x is a point of Lebesgue density of E if

$$\lim_{\substack{m(B)\to 0\\x\in B}}\frac{m\left(B\cap E\right)}{m\left(B\right)} = 1$$

In other words, sufficiently small balls around x are almost entirely covered by E.

a) Prove the following:

- i) Almost every $x \in E$ is a point of Lebesgue density of E
- ii) Almost every $x \notin E$ is not a point of Lebesgue density.

Hint: This follows immediately from the Lebesgue differentiation theorem.

b) Prove that if a measurable subset $E \subset [0, 1]$ satisfies $m(E \cap I) \ge \alpha m(I)$ for some $\alpha > 0$ and all intervals $I \subset [0, 1]$ then E has measure 1.

4 Functions of bounded variation I

Prove the following: If $f : [a, b] \to \mathbb{R}$ is of bounded variation and continuous then so is the total variation $T_f(a, x)$.

5 Functions of bounded variation II (Exercise 11 of [SS])

Let a, b > 0 be positive constant and consider

$$f(x) = \begin{cases} x^{a} \sin(x^{-b}) & \text{for } 0 < x \le 1, \\ 0 & \text{if } x = 0 \end{cases}$$

- a) Prove that f is of bounded variation if [0, 1] if and only if a > b.
- b) Set a = b. Construct for each $\alpha \in (0, 1)$ a function that satisfies the Lipschitz condition of exponent α

$$|f(x) - f(y)| \le M_{\alpha} |x - y|^{\epsilon}$$

but which is not of bounded variation. Here M_{α} is a constant.

Remark: Recall that in lectures we saw that if the above holds with $\alpha = 1$, then f is of bounded variation. HINT: Estimate |f(x+h) - f(x)| for h > 0 in two different ways (one being the mean value theorem, the other being by $C(x+h)^a$. Consider then the cases $x^{a+1} \ge h$ and $x^{a+1} < h$.).