Measure and Integration: Example Sheet 7

Fall 2016 [G. Holzegel]
March 12, 2017

1 Hardy-Littlewood maximal function I (Exercise 4 in [SS])

a) Prove that if f is integrable on \mathbb{R}^{d} and not identically zero, then

$$
f^{\star}(x) \geq \frac{c}{|x|^{d}}
$$

holds for some constant $c>0$ and all $|x| \geq 1$. Conclude that f^{\star} is not integrable on \mathbb{R}^{d}.
b) Consider an f supported on the unit ball with $\int|f|=1$. Conclude that

$$
m\left(\left\{x \mid f^{\star}(x)>\alpha\right\}\right) \geq \frac{c^{\prime}}{\alpha}
$$

holds for some constant $c^{\prime}>0$ and all sufficiently small α. Remark: This shows that the weak-type inequality we proved in class, $m\left(\left\{x \mid f^{\star}(x)>\alpha\right\}\right) \leq \frac{C}{\alpha}$ for all α, cannot be improved.

2 Hardy-Littlewood maximal function II (Exercise 5 in [SS])

Consider the function on \mathbb{R} defined by

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{|x|(\log 1 /|x|)^{2}} & \text { if }|x| \leq 1 / 2 \\
0 & \text { otherwise. }
\end{array}\right.
$$

a) Verify that f is integrable.
b) Establish the inequality

$$
f^{\star}(x) \geq \frac{c}{|x|(\log 1 /|x|)}
$$

for some constant $c>0$ and all $|x| \leq \frac{1}{2}$. Conclude that the maximal function f^{\star} is not locally integrable.

3 Points of Lebesgue density

Let $E \subset \mathbb{R}^{d}$ be a measurable set. We say that x is a point of Lebesgue density of E if

$$
\lim _{\substack{m(B) \rightarrow 0 \\ x \in B}} \frac{m(B \cap E)}{m(B)}=1 .
$$

In other words, sufficiently small balls around x are almost entirely covered by E.
a) Prove the following:
i) Almost every $x \in E$ is a point of Lebesgue density of E
ii) Almost every $x \notin E$ is not a point of Lebesgue density.

Hint: This follows immediately from the Lebesgue differentiation theorem.
b) Prove that if a measurable subset $E \subset[0,1]$ satisfies $m(E \cap I) \geq \alpha m(I)$ for some $\alpha>0$ and all intervals $I \subset[0,1]$ then E has measure 1 .

4 Functions of bounded variation I

Prove the following: If $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation and continuous then so is the total variation $T_{f}(a, x)$.

5 Functions of bounded variation II (Exercise 11 of [SS])

Let $a, b>0$ be positive constant and consider

$$
f(x)=\left\{\begin{array}{cl}
x^{a} \sin \left(x^{-b}\right) & \text { for } 0<x \leq 1 \\
0 & \text { if } x=0
\end{array}\right.
$$

a) Prove that f is of bounded variation if $[0,1]$ if and only if $a>b$.
b) Set $a=b$. Construct for each $\alpha \in(0,1)$ a function that satisfies the Lipschitz condition of exponent α

$$
|f(x)-f(y)| \leq M_{\alpha}|x-y|^{\alpha}
$$

but which is not of bounded variation. Here M_{α} is a constant.
Remark: Recall that in lectures we saw that if the above holds with $\alpha=1$, then f is of bounded variation. HINT: Estimate $|f(x+h)-f(x)|$ for $h>0$ in two different ways (one being the mean value theorem, the other being by $C(x+h)^{a}$. Consider then the cases $x^{a+1} \geq h$ and $x^{a+1}<h$.).

