Measure and Integration: Example Sheet 4

Fall 2016 [G. Holzegel]

November 2, 2016

Problem 1 provides a proof omitted in lectures. Problem 2 is very easy. You may want to wait for Friday?s lecture with Problem 3.

1 Independence of the representation for Lebesgue integral on simple functions

Prove the first item in Proposition 3.1 of the notes. Here is a possible outline (from Stein-Shakarchi):

- 1. First a helpful Lemma: Prove that given a finite collection of sets $F_1, F_2, ..., F_N$ there exists another collection $F_1^{\star}, ..., F_M^{\star}$ with $M = 2^N 1$ such that
 - $\bigcup_{n=1}^{N} F_n = \bigcup_{m=1}^{M} F_m^{\star}$.
 - The F_m^{\star} are pairwise disjoint
 - $F_n = \bigcup_{F_m^{\star} \subset F_n} F_m^{\star}$ for every n

Hint: Look at the sets $F'_1 \cap F'_2 \cap \ldots \cap F'_N$ with each F'_n being either F_n or $(F_n)^c$.

- 2. Let $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ and assume first that the E_k are disjoint (but the a_k not necessarily distinct). Prove that the integral is independent of the representation.
- 3. Assume now $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ arbitrary. Use the Lemma in Part 1 to write $\varphi = \sum_{j=1}^{M} a_j^* \chi_{E_j^*}$ for suitable a_j^* and note that this is a decomposition dealt with in Part 2.

2 Tchebychev Inequality

Suppose $f \ge 0$ and f is integrable. If $\alpha > 0$ and $E_{\alpha} = \{x \mid f(x) > \alpha\}$ then

$$m(E_{\alpha}) \leq \frac{1}{\alpha} \int f.$$

3 The Borel Cantelli Lemma revisited

a) Let $\sum_{k=1}^{\infty} a_k(x)$ be a series with each $a_k(x) \ge 0$ measurable. Then

$$\int \sum_{k=1}^{\infty} a_k(x) \, dx = \sum_{k=1}^{\infty} \int a_k(x) \, dx \, .$$

In particular, if the right hand side is finite, then $\sum_{k=1}^{\infty} a_k(x)$ converges for a.e. x.

b) Use Part a) to give an alternative proof of the Borel Cantelli Lemma from Exercise Sheet 2. Hint: Choose $a_k = \chi_{E_k}$.