Measure and Integration: Example Sheet 4 (Solutions)

Fall 2016 [G. Holzegel]

March 12, 2017

1 Independence of the representation for Lebesgue integral on simple functions

1. Preliminary remark: It is useful to first draw a picture to see what's going on. We prove

Lemma 1.1. Given a finite collection of sets $F_1, F_2, ..., F_N$ there exists another collection $F_1^{\star}, ..., F_M^{\star}$ with $M = 2^N - 1$ such that

- (a) $\bigcup_{n=1}^{N} F_n = \bigcup_{m=1}^{M} F_m^{\star}$.
- (b) The F_m^{\star} are pairwise disjoint
- (c) For any fixed F_n $(n \in \{1, ..., N\})$ and F_m^{\star} $(m \in \{1, ..., 2^N 1\})$ we have either $F_m^{\star} \subset F_n$ or $F_m^{\star} \subset (F_n)^c$.

Note that the Lemma implies the statement on the problem sheet because fixing F_n the inclusion

$$\bigcup_{F_m^\star \subset F_n} F_m^\star \subset F_r$$

holds trivially while assuming $x \notin \bigcup_{F_m^{\star} \subset F_n} F_m^{\star}$ and $x \in F_n$ leads to a contradiction: We then would have $x \in F_k^{\star} \not\subset F_n$ for some k (as x has to be in some F_k^{\star} by (a)) and hence by (c) $x \in F_k^{\star} \subset (F_n)^c$.

Proof. We use the hint and consider the $2^{N-1} - 1$ sets F_m^* given by $F_1' \cap \ldots \cap F_n'$ where F_i' is either F_i or $(F_i)^c$ and we are omitting the set where all F_i' are given by the complement (otherwise there would be 2^N sets, obviously). We refer to the expression for F_m^* as an *expansion* and to the F_i' appearing in the expansion as the *i*th entry below.

The F_m^{\star} are clearly pairwise disjoint as any pair F_m^{\star} , F_m^{\star} differs in at least one "entry" (one of them being F_i and the other $(F_i)^c$) hence their intersection is empty. This shows (b). Item (c) is also immediate since a given F_m^{\star} has i^{th} -entry either F_i or $(F_i)^c$ and is hence a subset of either F_i or its complement. Finally, we prove (a). We clearly have $\bigcup_{n=1}^N F_n \supset \bigcup_{m=1}^M F_m^{\star}$ since being in F_m^{\star} implies being in at least one F_n (since not all entries in the definition of F_m^{\star} can be complements). On the other hand, suppose $x \in F_n$. Then we have

$$F_n = \bigcup_{F'_i, i \le N, i \ne n} F'_1 \cap \ldots \cap F_n \cap \ldots \cap F'_N \subset \bigcup_{m=1}^M F_m^*$$

which proves the claim. [To see the last equality note again that the \supset -direction is trivial while assuming $x \in F_n$ we must have for any $i \neq n$ either $x \in F_i$ or $x \in (F_i)^c$ and this expansion necessarily appears in the union.]

2. We consider a representation $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ with the E_k disjoint but the a_k not necessarily distinct. We find its canonical form: Let $a'_1, ..., a'_m$ be the *distinct* values of a_k . For each a'_m we consider the sets

$$E'_m = \bigcup_{k \text{ with } a_k = a'_m} E_k \,.$$

The sets E'_m are still disjoint (a set E_k can only appear in the union of one E'_m) and we have

$$\varphi = \sum_{k=1}^{N} a_k \chi_{E_k} = \sum_m a'_m \chi_{E'_m}$$

We now observe

$$\sum_{m} a'_{m} m\left(E'_{m}\right) = \sum_{m} a'_{m} \sum_{k \text{ with } a_{k} = a'_{m}} m\left(E_{k}\right) = \sum_{m} \sum_{k \text{ with } a_{k} = a'_{m}} a_{k} m\left(E_{k}\right) = \sum_{k=1}^{N} a_{k} m\left(E_{k}\right) \,.$$

N7

3. We finally consider an arbitrary representation $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$, i.e. the E_k not necessarily disjoint and the a_k not necessarily distinct. The proof consists in finding a representation for φ considered in 2., i.e. $\varphi = \sum_{j=1}^{M} a_j^* \chi_{E_j^*}$ with the E_j disjoint and showing that $\sum_k a_k m(E_k) = \sum_j a_j^* m(E_j^*)$. This indeed establishes independence of the representation because by 2. the second sum is equal to the integral of φ in its canonical representation.

To find the representation we use the Lemma. Given the collection E_k , we find a pairwise disjoint collection E_i^* with the properties stated in the Lemma. Now for each a_k we define

$$a_j^\star = \sum_{k \mid E_j^\star \subset E_k} a_k$$

that is we are summing over all k such that E_k contains E_i^* (again, draw a picture!). We have¹

$$\sum_{j=1}^{M} a_{j}^{\star} \chi_{E_{j}^{\star}} = \sum_{j=1}^{M} \sum_{k \mid E_{j}^{\star} \subset E_{k}} a_{k} \chi_{E_{j}^{\star}} = \sum_{k=1}^{N} \sum_{j \mid E_{j}^{\star} \subset E_{k}} a_{k} \chi_{E_{j}^{\star}} = \sum_{k=1}^{N} a_{k} \sum_{j \mid E_{j}^{\star} \subset E_{k}} \chi_{E_{j}^{\star}} = \sum_{k=1}^{N} a_{k} \chi_{E_{k}} = \varphi$$

and we observe (using the reasoning of the previous line)

$$\sum_{j=1}^{M} a_{j}^{\star} m\left(E_{j}^{\star}\right) = \sum_{k=1}^{N} \sum_{j \mid E_{j}^{\star} \subset E_{k}} a_{k} m\left(E_{j}^{\star}\right) = \sum_{k=1}^{N} a_{k} m\left(E_{k}\right) \,.$$

2 Tchebychev Inequality

We have

$$\int f \ge \int_{E_{\alpha}} f \ge \alpha \int_{E_{\alpha}} 1 = \alpha \cdot m(E_{\alpha})$$

for any $\alpha > 0$.

3 The Borel Cantelli Lemma revisited

a) Define the sequence of measurable functions (f_N) by

$$f_N(x) = \sum_{k=1}^N a_k(x)$$

¹For the second equality, think of summing over all pairs (j,k) with the property that $E_i^* \subset E_k$.

Since $a_k(x) \ge 0$ the sequence f_N is increasing and non-negative, and also $f_N \to \sum_{k=1}^{\infty} a_k(x)$. The MCT implies that

$$\int \lim_{N \to \infty} f_N(x) dx = \lim_{N \to \infty} \int f_N(x) dx$$

holds in the extended sense. This can be written as

$$\int \sum_{k=1}^{\infty} a_k(x) \, dx = \lim_{N \to \infty} \sum_{k=1}^N \int a_k(x) \, dx = \sum_{k=1}^{\infty} \int a_k(x) \, dx \,, \tag{1}$$

which is what appears on the problem sheet. If the right hand side is finite, then so is the left hand side, which implies that $\sum_{k=1}^{\infty} a_k(x)$ is integrable, which in turn implies that $\sum_{k=1}^{\infty} a_k(x)$ is finite almost everywhere, which is equivalent to $\sum_{k=1}^{\infty} a_k(x)$ converging for a.e. x.

b) Recall that the Borel-Cantelli Lemma assumes a countable collection of sets (E_k) with $\sum_{k=1}^{\infty} m(E_k) < \infty$ and concludes that the set of points contained in infinitely many E_k has measure zero. To prove this statement we use the hint and apply the identity (1) with $a_k = \chi_{E_k}$. Then the right hand side is precisely $\sum_{k=1}^{\infty} m(E_k) < \infty$ and from a) we conclude that the sum

$$\sum_{k=1}^{\infty} \chi_{E_k}(x)$$

converges for a.e. $x \in \mathbb{R}^d$, i.e. for $x \in \mathbb{R}^d \setminus \mathcal{N}$ with \mathcal{N} a measure zero set on which the sum diverges. Clearly the sum converges if and only if x is in the complement of the set $\{x \mid x \in E_k \text{ for infinitely many } k\}$. Hence $\mathcal{N} = \{x \mid x \in E_k \text{ for infinitely many } k\}$ and we are done.