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1 Independence of the representation for Lebesgue integral on
simple functions

1. Preliminary remark: It is useful to first draw a picture to see what’s going on. We prove

Lemma 1.1. Given a finite collection of sets F1, F2, ..., FN there exists another collection F ?1 , ..., F
?
M

with M = 2N − 1 such that

(a)
⋃N
n=1 Fn =

⋃M
m=1 F

?
m.

(b) The F ?m are pairwise disjoint

(c) For any fixed Fn (n ∈ {1, ..., N}) and F ?m (m ∈ {1, ..., 2N − 1}) we have either F ?m ⊂ Fn or
F ?m ⊂ (Fn)c.

Note that the Lemma implies the statement on the problem sheet because fixing Fn the inclusion⋃
F?m⊂Fn

F ?m ⊂ Fn

holds trivially while assuming x /∈
⋃
F?m⊂Fn

F ?m and x ∈ Fn leads to a contradiction: We then would

have x ∈ F ?k 6⊂ Fn for some k (as x has to be in some F ?k by (a)) and hence by (c) x ∈ F ?k ⊂ (Fn)c.

Proof. We use the hint and consider the 2N−1− 1 sets F ?m given by F ′1 ∩ . . .∩F ′n where F ′i is either Fi
or (Fi)

c and we are omitting the set where all F ′i are given by the complement (otherwise there would
be 2N sets, obviously). We refer to the expression for F ?m as an expansion and to the F ′i appearing in
the expansion as the ith entry below.

The F ?m are clearly pairwise disjoint as any pair F ?m, F ?m̃ differs in at least one “entry” (one of them
being Fi and the other (Fi)

c) hence their intersection is empty. This shows (b). Item (c) is also
immediate since a given F ?m has ith-entry either Fi or (Fi)

c and is hence a subset of either Fi or its

complement. Finally, we prove (a). We clearly have
⋃N
n=1 Fn ⊃

⋃M
m=1 F

?
m since being in F ?m implies

being in at least one Fn (since not all entries in the definition of F ?m can be complements). On the
other hand, suppose x ∈ Fn. Then we have

Fn =
⋃

F ′
i ,i≤N,i6=n

F ′1 ∩ . . . ∩ Fn ∩ . . . ∩ F ′N ⊂
M⋃
m=1

F ?m

which proves the claim. [To see the last equality note again that the ⊃-direction is trivial while
assuming x ∈ Fn we must have for any i 6= n either x ∈ Fi or x ∈ (Fi)

c and this expansion necessarily
appears in the union.]
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2. We consider a representation ϕ =
∑N
k=1 akχEk with the Ek disjoint but the ak not necessarily distinct.

We find its canonical form: Let a′1, ..., a
′
m be the distinct values of ak. For each a′m we consider the

sets
E′m =

⋃
k with ak=a′m

Ek .

The sets E′m are still disjoint (a set Ek can only appear in the union of one E′m) and we have

ϕ =

N∑
k=1

akχEk =
∑
m

a′mχE′
m
.

We now observe

∑
m

a′mm (E′m) =
∑
m

a′m
∑

k with ak=a′m

m (Ek) =
∑
m

∑
k with ak=a′m

akm (Ek) =

N∑
k=1

akm (Ek) .

3. We finally consider an arbitrary representation ϕ =
∑N
k=1 akχEk , i.e. the Ek not necessarily disjoint

and the ak not necessarily distinct. The proof consists in finding a representation for ϕ considered in
2., i.e. ϕ =

∑M
j=1 a

?
jχE?j with the Ej disjoint and showing that

∑
k akm (Ek) =

∑
j a

?
jm
(
E?j
)
. This

indeed establishes independence of the representation because by 2. the second sum is equal to the
integral of ϕ in its canonical representation.

To find the representation we use the Lemma. Given the collection Ek, we find a pairwise disjoint
collection E?j with the properties stated in the Lemma. Now for each ak we define

a?j =
∑

k | E?j⊂Ek

ak ,

that is we are summing over all k such that Ek contains E?j (again, draw a picture!). We have1

M∑
j=1

a?jχE?j =

M∑
j=1

∑
k|E?j⊂Ek

akχE?j =

N∑
k=1

∑
j|E?j⊂Ek

akχE?j =

N∑
k=1

ak
∑

j|E?j⊂Ek

χE?j =

N∑
k=1

akχEk = ϕ

and we observe (using the reasoning of the previous line)

M∑
j=1

a?jm
(
E?j
)

=

N∑
k=1

∑
j|E?j⊂Ek

akm
(
E?j
)

=

N∑
k=1

akm (Ek) .

2 Tchebychev Inequality

We have ∫
f ≥

∫
Eα

f ≥ α
∫
Eα

1 = α ·m (Eα)

for any α > 0.

3 The Borel Cantelli Lemma revisited

a) Define the sequence of measurable functions (fN ) by

fN (x) =

N∑
k=1

ak(x)

1For the second equality, think of summing over all pairs (j, k) with the property that E?
j ⊂ Ek.
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Since ak(x) ≥ 0 the sequence fN is increasing and non-negative, and also fN →
∑∞
k=1 ak(x). The MCT

implies that ∫
lim
N→∞

fN (x)dx = lim
N→∞

∫
fN (x)dx

holds in the extended sense. This can be written as∫ ∞∑
k=1

ak(x) dx = lim
N→∞

N∑
k=1

∫
ak(x) dx =

∞∑
k=1

∫
ak(x) dx , (1)

which is what appears on the problem sheet. If the right hand side is finite, then so is the left hand
side, which implies that

∑∞
k=1 ak(x) is integrable, which in turn implies that

∑∞
k=1 ak(x) is finite almost

everywhere, which is equivalent to
∑∞
k=1 ak(x) converging for a.e. x.

b) Recall that the Borel-Cantelli Lemma assumes a countable collection of sets (Ek) with
∑∞
k=1m (Ek) <∞

and concludes that the set of points contained in infinitely many Ek has measure zero. To prove this
statement we use the hint and apply the identity (1) with ak = χEk . Then the right hand side is precisely∑∞
k=1m (Ek) <∞ and from a) we conclude that the sum

∞∑
k=1

χEk(x)

converges for a.e. x ∈ Rd, i.e. for x ∈ Rd\N with N a measure zero set on which the sum diverges. Clearly
the sum converges if and only if x is in the complement of the set {x | x ∈ Ek for infinitely many k}.
Hence N = {x | x ∈ Ek for infinitely many k} and we are done.
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