Measure and Integration: Example Sheet 4 (Solutions)

Fall 2016 [G. Holzegel]

March 12, 2017

1 Independence of the representation for Lebesgue integral on simple functions

1. Preliminary remark: It is useful to first draw a picture to see what's going on. We prove

Lemma 1.1. Given a finite collection of sets $F_{1}, F_{2}, \ldots, F_{N}$ there exists another collection $F_{1}^{\star}, \ldots, F_{M}^{\star}$ with $M=2^{N}-1$ such that
(a) $\bigcup_{n=1}^{N} F_{n}=\bigcup_{m=1}^{M} F_{m}^{\star}$.
(b) The F_{m}^{\star} are pairwise disjoint
(c) For any fixed $F_{n}(n \in\{1, \ldots, N\})$ and $F_{m}^{\star}\left(m \in\left\{1, \ldots, 2^{N}-1\right\}\right)$ we have either $F_{m}^{\star} \subset F_{n}$ or $F_{m}^{\star} \subset\left(F_{n}\right)^{c}$.

Note that the Lemma implies the statement on the problem sheet because fixing F_{n} the inclusion

$$
\bigcup_{F_{m}^{\star} \subset F_{n}} F_{m}^{\star} \subset F_{n}
$$

holds trivially while assuming $x \notin \bigcup_{F_{m}^{\star} \subset F_{n}} F_{m}^{\star}$ and $x \in F_{n}$ leads to a contradiction: We then would have $x \in F_{k}^{\star} \not \subset F_{n}$ for some k (as x has to be in some F_{k}^{\star} by (a)) and hence by (c) $x \in F_{k}^{\star} \subset\left(F_{n}\right)^{c}$.

Proof. We use the hint and consider the $2^{N-1}-1$ sets F_{m}^{\star} given by $F_{1}^{\prime} \cap \ldots \cap F_{n}^{\prime}$ where F_{i}^{\prime} is either F_{i} or $\left(F_{i}\right)^{c}$ and we are omitting the set where all F_{i}^{\prime} are given by the complement (otherwise there would be 2^{N} sets, obviously). We refer to the expression for F_{m}^{\star} as an expansion and to the F_{i}^{\prime} appearing in the expansion as the $i^{\text {th }}$ entry below.
The F_{m}^{\star} are clearly pairwise disjoint as any pair $F_{m}^{\star}, F_{\tilde{m}}^{\star}$ differs in at least one "entry" (one of them being F_{i} and the other $\left(F_{i}\right)^{c}$) hence their intersection is empty. This shows (b). Item (c) is also immediate since a given F_{m}^{\star} has $i^{t h}$-entry either F_{i} or $\left(F_{i}\right)^{c}$ and is hence a subset of either F_{i} or its complement. Finally, we prove (a). We clearly have $\bigcup_{n=1}^{N} F_{n} \supset \bigcup_{m=1}^{M} F_{m}^{\star}$ since being in F_{m}^{\star} implies being in at least one F_{n} (since not all entries in the definition of F_{m}^{\star} can be complements). On the other hand, suppose $x \in F_{n}$. Then we have

$$
F_{n}=\bigcup_{F_{i}^{\prime}, i \leq N, i \neq n} F_{1}^{\prime} \cap \ldots \cap F_{n} \cap \ldots \cap F_{N}^{\prime} \subset \bigcup_{m=1}^{M} F_{m}^{\star}
$$

which proves the claim. [To see the last equality note again that the \supset-direction is trivial while assuming $x \in F_{n}$ we must have for any $i \neq n$ either $x \in F_{i}$ or $x \in\left(F_{i}\right)^{c}$ and this expansion necessarily appears in the union.]
2. We consider a representation $\varphi=\sum_{k=1}^{N} a_{k} \chi_{E_{k}}$ with the E_{k} disjoint but the a_{k} not necessarily distinct. We find its canonical form: Let $a_{1}^{\prime}, \ldots, a_{m}^{\prime}$ be the distinct values of a_{k}. For each a_{m}^{\prime} we consider the sets

$$
E_{m}^{\prime}=\bigcup_{k \text { with } a_{k}=a_{m}^{\prime}} E_{k}
$$

The sets E_{m}^{\prime} are still disjoint (a set E_{k} can only appear in the union of one E_{m}^{\prime}) and we have

$$
\varphi=\sum_{k=1}^{N} a_{k} \chi_{E_{k}}=\sum_{m} a_{m}^{\prime} \chi_{E_{m}^{\prime}}
$$

We now observe

$$
\sum_{m} a_{m}^{\prime} m\left(E_{m}^{\prime}\right)=\sum_{m} a_{m}^{\prime} \sum_{k \text { with } a_{k}=a_{m}^{\prime}} m\left(E_{k}\right)=\sum_{m} \sum_{k \text { with } a_{k}=a_{m}^{\prime}} a_{k} m\left(E_{k}\right)=\sum_{k=1}^{N} a_{k} m\left(E_{k}\right)
$$

3. We finally consider an arbitrary representation $\varphi=\sum_{k=1}^{N} a_{k} \chi_{E_{k}}$, i.e. the E_{k} not necessarily disjoint and the a_{k} not necessarily distinct. The proof consists in finding a representation for φ considered in 2., i.e. $\varphi=\sum_{j=1}^{M} a_{j}^{\star} \chi_{E_{j}^{\star}}$ with the E_{j} disjoint and showing that $\sum_{k} a_{k} m\left(E_{k}\right)=\sum_{j} a_{j}^{\star} m\left(E_{j}^{\star}\right)$. This indeed establishes independence of the representation because by 2 . the second sum is equal to the integral of φ in its canonical representation.
To find the representation we use the Lemma. Given the collection E_{k}, we find a pairwise disjoint collection E_{j}^{\star} with the properties stated in the Lemma. Now for each a_{k} we define

$$
a_{j}^{\star}=\sum_{k \mid E_{j}^{\star} \subset E_{k}} a_{k}
$$

that is we are summing over all k such that E_{k} contains E_{j}^{\star} (again, draw a picture!). We have ${ }^{1}$

$$
\sum_{j=1}^{M} a_{j}^{\star} \chi_{E_{j}^{\star}}=\sum_{j=1}^{M} \sum_{k \mid E_{j}^{\star} \subset E_{k}} a_{k} \chi_{E_{j}^{\star}}=\sum_{k=1}^{N} \sum_{j \mid E_{j}^{\star} \subset E_{k}} a_{k} \chi_{E_{j}^{\star}}=\sum_{k=1}^{N} a_{k} \sum_{j \mid E_{j}^{\star} \subset E_{k}} \chi_{E_{j}^{\star}}=\sum_{k=1}^{N} a_{k} \chi_{E_{k}}=\varphi
$$

and we observe (using the reasoning of the previous line)

$$
\sum_{j=1}^{M} a_{j}^{\star} m\left(E_{j}^{\star}\right)=\sum_{k=1}^{N} \sum_{j \mid E_{j}^{\star} \subset E_{k}} a_{k} m\left(E_{j}^{\star}\right)=\sum_{k=1}^{N} a_{k} m\left(E_{k}\right)
$$

2 Tchebychev Inequality

We have

$$
\int f \geq \int_{E_{\alpha}} f \geq \alpha \int_{E_{\alpha}} 1=\alpha \cdot m\left(E_{\alpha}\right)
$$

for any $\alpha>0$.

3 The Borel Cantelli Lemma revisited

a) Define the sequence of measurable functions $\left(f_{N}\right)$ by

$$
f_{N}(x)=\sum_{k=1}^{N} a_{k}(x)
$$

[^0]Since $a_{k}(x) \geq 0$ the sequence f_{N} is increasing and non-negative, and also $f_{N} \rightarrow \sum_{k=1}^{\infty} a_{k}(x)$. The MCT implies that

$$
\int \lim _{N \rightarrow \infty} f_{N}(x) d x=\lim _{N \rightarrow \infty} \int f_{N}(x) d x
$$

holds in the extended sense. This can be written as

$$
\begin{equation*}
\int \sum_{k=1}^{\infty} a_{k}(x) d x=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \int a_{k}(x) d x=\sum_{k=1}^{\infty} \int a_{k}(x) d x \tag{1}
\end{equation*}
$$

which is what appears on the problem sheet. If the right hand side is finite, then so is the left hand side, which implies that $\sum_{k=1}^{\infty} a_{k}(x)$ is integrable, which in turn implies that $\sum_{k=1}^{\infty} a_{k}(x)$ is finite almost everywhere, which is equivalent to $\sum_{k=1}^{\infty} a_{k}(x)$ converging for a.e. x.
b) Recall that the Borel-Cantelli Lemma assumes a countable collection of sets $\left(E_{k}\right)$ with $\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$ and concludes that the set of points contained in infinitely many E_{k} has measure zero. To prove this statement we use the hint and apply the identity (1) with $a_{k}=\chi_{E_{k}}$. Then the right hand side is precisely $\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$ and from a) we conclude that the sum

$$
\sum_{k=1}^{\infty} \chi_{E_{k}}(x)
$$

converges for a.e. $x \in \mathbb{R}^{d}$, i.e. for $x \in \mathbb{R}^{d} \backslash \mathcal{N}$ with \mathcal{N} a measure zero set on which the sum diverges. Clearly the sum converges if and only if x is in the complement of the set $\left\{x \mid x \in E_{k}\right.$ for infinitely many $\left.k\right\}$. Hence $\mathcal{N}=\left\{x \mid x \in E_{k}\right.$ for infinitely many $\left.k\right\}$ and we are done.

[^0]: ${ }^{1}$ For the second equality, think of summing over all pairs (j, k) with the property that $E_{j}^{\star} \subset E_{k}$.

