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1 A variant of the dominated convergence theorem

a) We start from
|fn(x)− f(x)| ≤ gn(x) + g(x)

which holds for a.e. x by the triangle inequality (note the assumptions imply |f(x)| ≤ g(x) for a.e. x). After
changing g on a set of measure zero, the sequence of functions given by hn(x) = g(x)+gn(x)−|fn(x)−f(x)|
is non-negative and we can apply Fatou’s Lemma to produce the inequality

lim inf
n→∞

∫
(g(x) + gn(x)− |fn(x)− f(x)|) dx ≥

∫
2g(x)dx .

Now since we are assuming
∫
gn →

∫
g and that

∫
g <∞ we obtain, just as in the proof in class

lim sup
n→∞

∫
(|fn(x)− f(x)|) dx ≤ 0 ,

from which we deduce limn→∞
∫
|fn(x) − f(x)| dx = 0 and by the triangle inequality that

∫
fn →

∫
f .

For the application in part b) we note that we actually proved the stronger statement that
∫
|fn−f | → 0.

b) Suppose
∫
|fn − f | → 0. By the triangle inequality for the integral and the pointwise reverse triangle

inequality we have∣∣∣ ∫ (|fn(x)| − |f(x)|
)
dx
∣∣∣ ≤ ∫ ∣∣∣|fn(x)| − |f(x)|

∣∣∣ dx ≤ ∫ ∣∣∣fn(x)− f(x)
∣∣∣ dx

and using the assumption the left hand side goes to zero. It follows that
∫
|fn| →

∫
|f |.

Suppose now
∫
|fn| →

∫
|f |. The idea is to use part a). We have fn(x) → f(x) for almost every x

and hence |fn(x)| → |f(x)| for almost every x. If we set gn(x) = |fn(x)| and g(x) = limn→∞ gn(x) =
limn→∞ |fn(x)| = |f(x)| it is easily checked that all assumptions of part a) are satisfied, in particular
fn(x) ≤ |fn(x)| = |gn(x)| and

∫
|fn| →

∫
|f |. The stronger statement proven in part a) then implies∫

|fn − f | → 0 as desired.

2 Implications and (non implications) of integrability

a) To show F is uniformly continuous we need to show given ε > 0 we can find a δ such that |F (y)−F (x)| < ε
holds whenever |x− y| < δ. Given ε we find by Proposition 3.5 of the lecture notes (absolute continuity)
a δ such that ∣∣∣ ∫

I

f(t)dt
∣∣∣ < ε whenever |m (I) | < δ.

Hence in particular

|F (y)− F (x)| =
∣∣∣ ∫ y

x

f(t)dt
∣∣∣ < ε whenever |y − x| < δ.
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b) We first define the following non-negative (piece-wise linear) continuous function fn : R→ R by

fn(x) =


n5(x− n) + n if x ∈

[
n− 1

n4 , n
]
,

n if x ∈
(
n, n+ 1

n3

)
,

−n5(x− (n+ 1
n3 )) if x ∈

[
n+ 1

n3 , n+ 1
n3 + 1

n4

]
,

0 if otherwise.

It’s easiest to draw a picture! This function is clearly integrable with ‖fn‖L1 = 1
n3 + 1

n2 . Moreover, for
n ≥ 2 fm and fn have disjoint support for m 6= n. We define for n ≥ 2 the function

fN =

N∑
n=2

fn

which is continuous and integrable. Now observe that the function f defined by f(x) := limN→∞ fN (x)
is

• continuous (indeed for fixed x ∈ R there is an N such that f = fN holds in a neighbourhood of x)

• non-negative (obvious)

• integrable (this follows from the fN being monotone and the fact that
∫
R fN =

∑N
n=2

1
n2 + 1

n3 .
Indeed, by MCT we have

∫
f = limN→∞

∫
fN <∞)

• The sequence xm = m satisfies f(xm) = m. Hence lim supx→∞ f(x) = +∞.

3 Computation of Integrals

We recall first that

Γ (n+ 1) =

∫ ∞
0

xne−xdx = n!

Next we rewrite the desired integral as

lim
k→∞

∫ k

0

xn
(

1− x

k

)k
dx = lim

k→∞

∫ ∞
0

χ[0,k]x
n
(

1− x

k

)k
dx = lim

k→∞

∫ ∞
0

fk(x)dx (1)

for a sequence of measurable functions fk defined by

fk(x) := χ[0,k]x
n
(

1− x

k

)k
It is clear that pointwise this function converges to f(x) = xne−x, so the desired claim would follow if we
can interchange the limit and the integral in the last expression of (1). This in turn follows from the MCT:
Indeed, the fk are non-negative (note fk(x) = 0 for x ≥ k) and also for any x we have fk(x) ≤ fk+1(x) for
any k. To see this last claim, fix x and k. If x /∈ (0, k), then fk(x) = 0 and the inequality is trivially true.
For 0 < x < k fixed one shows using elementary calculus that the function gx(k) = (1−x/k)k increases in k.

4 Invariance properties of the Lebesgue integral

a) First, from the translation invariance of the Lebesgue measure (discussed in class) we recall that the set
E and the translated set Eh = {x+ h | x ∈ E} have the same measure m (Eh) = m (E). Since fh = χEh
the identity for the integral follows. Second, by the linearity of the integral the identity then also holds
for finite linear combinations of characteristic function, hence for simple functions. Third, an arbitrary
non-negative function can be approximated by a strictly increasing sequence of simple functions (ϕn).
But then both (ϕn) and ((ϕh)n) are increasing sequences of simple functions converging to f and fh
respectively. The desired identity clearly holds for each ϕn and (ϕh)n and the MCT implies that it also
holds for f and fh. Fourth and finally, a general integrable f can be decomposed into its positive and
negative part which are both integrable and for which the identity has already been established. Using
linearity once more the result follows.
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b) Indeed exactly the same as in a).

c) We follow the hint and for ε > 0 prescribed we find a continuous function of compact support g with
‖f − g‖L1 < ε. The assumptions on g imply that gh − g with |h| < 1 is (uniformly) compactly supported
and continuous, hence gh−g is dominated by an integrable function and the DCT implies limh→0

∫
|g(x−

h)− g(x)|dx = 0. Therefore we can find a δ (depending on ε) with ‖gh − g‖ < ε for |h| < δ. Finally, by
part a) we have ‖fh − gh‖L1 = ‖f − g‖L1 < ε and hence

‖fh − f‖L1 ≤ 3ε for all |h| < δ

which establishes that the desired limit exists and is equal to zero.

d) We adapt the proof in c). Since we are interested in the limit δ → 1 we a priori restrict to 1
2 < δ < 2.

Set fδ (x) = f (δx), pick g continuous and compactly supported with ‖f − g‖L1 < ε and decompose
‖fδ − f‖L1 = ‖fδ − gδ‖L1 + ‖gδ − g‖L1 + ‖g− f‖L1 . We have that g (δx)− g(x) is (uniformly) compactly
supported and hence limδ→1

∫
|g (δx)−g (x) |dx = 0 by DCT. We can hence choose η such that |δ−1| < η

implies ‖gδ − g‖L1 < ε. Finally, we have ‖fδ − gδ‖L1 = δ−d‖f − g‖L1 by part b) so that in total

‖fδ − f‖L1 ≤ δ−dε+ 2ε ≤ 2dε+ 2ε .

5 The Riemann-Lebesgue Lemma

[This makes reference to Section 3.5 of the notes (complex valued functions).]

a) To show that f̂ is continuous at ξ we show that for any sequence (hn) with hn → 0 we have f (ξ + hn)→
f(ξ). Indeed, given such a sequence (hn) we have

f̂ (ξ + hn)− f̂ (ξ) =

∫
Rd
f(x)e−2πixξ

[
e−2πixhn − 1

]
dx . (2)

Now the integrand on the right hand side defines a sequence of integrable functions dominated by 2|f(x)|,
which is integrable by assumption. Hence when taking the limit n → ∞ of (2), the limit can be inter-
changed with the integral and we obtain limn→∞ f (ξ + hn) = f (ξ) as desired, as the integrand converges
pointwise to zero a.e.

b) To verify the formula for ξ 6= 0, it suffices to observe that for ξ 6= 0 fixed, we have using the change of
variables (translation) y = x− 1

2
ξ
|ξ|2∫

f

(
x− 1

2

ξ

|ξ|2

)
e−2πixξ dx =

∫
f (y) e−2πixye−πidy = −

∫
f (y) e−2πiξydy .

To prove the statement about the limit we compute

|f̂ (ξ) | ≤ 1

2

∥∥∥f − fh= 1
2

ξ

|ξ|2

∥∥∥
L1(Rd)

.

By question 4c the right hand side goes to zero as ξ →∞ (h→ 0) and hence so does the left hand side.
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