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1 Absolute Continuity I

a) This is simple. If C' is the Lipschitz constant for F' we choose § < C~'e if € > 0 is prescribed. Then we
have for any collection of disjoint intervals (ax, bx), k = 1,..., N of [a,b] with Zszl(bk —ay) < 0 that

N N
S |F(be) = Flar)| < Cloy — ax| < Co <ce.

n=1

b) Pick f(z) = y/z on the interval [0,1]. This is clearly not Lipschitz (\/y — V0 < C’(y — 0) yields a
contradiction for small enough y) but /7 is absolutely continuous because the function 5 f is integrable

on [0, 1] and hence by the Fundamental Theorem of Calculus (Theorem 4.7 in the notes)

/752} dy = V'z,

so the function /z is absolutely continuous.

2 The Cantor-Lebesgue function revisited one more time

a) There are many ways to write the g, more or less explicitly. Here is one suggestion. The complement of
¢,, consists of the union of 2” — 1 intervals (“the open intervals inbetween the 2™ closed intervals of €,,”)
which we order from left to right and denote by I3 for j = 1,...,2" — 1. On each of these intervals the

function g, is constant, its value being f (I ") ={L } We can then define

on

0 ifz=0,
1 ifz=1

gn(l‘)z j : ’r’L (1)
& ifxell,

linear on each interval of €, such that g, is continuous

It is clear that each g,, is monotone increasing. Note that on each interval of &€, the function g, 1ncreases

by = 5~ When going from gn to gn41 we are replacing in each interval of €, a linear function with slope 3 o

on an interval of length 3w by a function linear with slope 2:11 in the first and last third of the interval
and constant in the middle. We easily see (draw a picture!)

9051(2) — 9a(0)] < o (2)

in each interval of €, and since the gn41(z) = gn(z) in the complement of &, the bound (2) holds
uniformly for all x € [0, 1]. Therefore, in the telescopic sum

gn(z) = g1(z) + Z In+1(2) — gn(z))

1Note that the 1]7.‘ do not all have the same length!



the sum converges absolutely and uniformly in 2 we have that gx(z) converges uniformly to a g(x). Since
the limit of a uniformly converging sequence of continuous functions is again continuous, the limit g(z)
is continuous.

What is left is to show that g above is precisely the Cantor-Lebesgue function f from Example Sheets 1
and 3. Recall that on Example Sheet 1 we showed that the 2™ intervals constituting €,, can be written as

Cn,(ak) = [Zaki% Zak3 k 3n
k=1

for (ar)j_, a sequence with ay € {0,2} (of which there are 2™ distinct ones). We first claim that the
function g, is a linear function on each C), (4,) with image the interval

9n (Cr(an)) [Z bp2 " Zka e
ak

where by = 4. This is certainly true for n = 1. Assuming it now for n we observe that each inter-
val of C,,11,(a,) arises as the left or right third of an interval of C), (,,) as follows: The first n entries
of ay agree with those of ap, and moreover a,,1 = 0 if it is the left third and a,+; = 2 if it is the
right third of C,, (,,). Recalling how g, 1 is obtained from g,,, we observe that g,,+1 maps the left third,
Le. Yo ar3™F 4 5, D p a3 ™F + ,3"“ + gz | (linearly) to [>-)_; 0275, 30 bi2™F + 5k ], the
middle third to the constant Zk 1 bk2 2n+1 and the right third, which is the interval

> aw3™ + 527,300 ak3™F + 337 + 3257, (linearly) to the interval

k 1 k 1 n+1 n+1 k
Zbk2 2n+1,Zbk2 TEs 2n+1] [Zbﬂ Zka 2n+1

k=1

This proves the claim. Next consider an arbitrary point x € €, which by Sheet 1 has unique representation

x = Z a3~k (3)
k=1

for some sequence (ay) with entries 0 or 2. Moreover, defining by = % we have (cf. Sheet 1)
f(z) = Z ok *
k=1

On the other hand, for any n,  lies in the interval C,, (4, ), where with a slight abuse of notation, (ax)j_,
denote the first n entires of the infinite sequence (ay) in (3). By the claim above

u 1
k
lon(@) = oxl < 5
k=1
The triangle inequality and an elementary geometric sum allow us to conclude

= b 1 2 1
— < — JE— =
|f(-r) gn(x)l = k=§n+: X ok + on = 2n on—1

As this works for any n and g, — g we conclude that g and f agree for z € €. Now for € € (the
complement being in [0, 1]) we have
T € U (€,)°
n=1

so x lies in one of the open intervals of some €,,. But both f and g are defined to be constant there with
the constant depending on the endpoints of the (open) interval which belong to € where f and g have
already been shown to agree.



b)

We claim that for e = 1/2 the following statement is true: For any ¢ > 0 there exists a collection of
disjoint intervals (ag,bx), k = 1,..., N such that Zk 1(by —ag) < 6 but Zk 1 |f(bk) flag)| > 1/2. To
find such a collection of d15301nt mtervals given § > 0 we first pick n such that ( )™ < . We then look

at the interior of the N = 2" closed disjoint intervals of &, C € C [0,1] denoted (ak, by), which, since
each has length 2 5w satisfy Zk 1 (b —ax) = on L 3n < §. On the other hand, we have that f changes by
5= on each of these intervals, so f(by) — f(ar) = 5= and hence Zk 1 f(bk) — f(ar) = 1. [Recall that the
value of f at the endpoints of each interval of C,, is determined once and for all in the n* step of the
construction in a)!]

Absolute Continuity 11

Let N C [a,b] be a set of measure zero. We can assume wlog that a and b are not in A/. (If we show
[ (N) has measure zero for such N it also follows for N'U {a} U {b}.)

Let € > 0 be prescribed. Since f is absolutely continuous we can find a § such that for any collection of
disjoint intervals (ay,bx), k =1,..., N of [a,b] with Z,[j:l(bk —ag) < § we have

N
Z flap)| <e.

For this 6 > 0 we find an open set U with N C U C (a,b) and m (U) < §. We can write U as a disjoint
union of open intervals (ay, bx) C (a,b), that is U = (Jr; (ak, b). We have that

f(N)Cf<[j ak,bk> Uf ((ak, b)) - (4)

k=1

If f was monotone, we would have Jy—, f ((ax,bx)) = Uz, (f(ax), f(bg)) and by the absolute continuity

NE

[f(ar) = fbr)| <€

k=1

for any n. Hence > p, |f(ax) — f(bx)| < €, which shows that m (U=, (f(ax), f(by))) = O since the
argument works for any € > 0. It follows that f(N) is a subset of a measure zero set and hence
measurable with measure zero.

If f is not monotone we refine the above argument. We first note that (4) holds replacing the open intervals
by closed intervals [ag, bi]. We then further replace each interval [ay, bi] by a smaller interval [dk, Bk} -
[ax, bi] such that f ([ax, by]) = [ (@), f(?)k)] as follows: If m denotes the minimum and M the maximum
of f on [ag,by] (Which exist by continuity and compactness) we define ax = mingep,, »,{z | f(z) = m}

(the smallest # which assumes the minimum) and b, = MaXye(a, b, 17 | f(7) = M} (the largest x which
assumes the maximum). We now have

FN) € U [£@) s )] - (5)

The sets (d;€7 Bk) are disjoint and > ;_; (I;k k) < 4 holds for any n. Hence by absolute continuity

i (f(l;k) - f (%)) <e

k=1

for any n. Since the left hand side controls the measure of the set on the right hand side of (5) we
conclude m (f (M)) = 0 as in the previous (monotone) case.



b) Let E C [a,b] be a measurable set. By Proposition 2.4 of the notes we know that E is a union of an F,
set with a set of measure zero,

o0
E:UFkUJ\/',
k=1

where the Fj, are closed and N is a set of measure zero. Since the F}, are necessarily subsets of [a, b] they
are also compact. Since f is continuous the f(F}) are compact, hence measurable. Using that f (N) is
measurable with measure zero by part a) we obtain that f (F) is a countable union of measurable set
and is hence measurable.

4 Absolute Continuity 111

We first show that F'G is also absolutely continuous. Let € > 0 be given. Defining

C' = max < max F(z), max G@;)) .

z€[a,b] z€la,b]
and ¢ to be be the minimum of the two ¢’s associated with € = 55 in the definition of absolute continuity
for F' and G respectively. We then have, for any collection of disjoint intervals (ag,b), k =1, ..., N of [a, b]

with ng’:l(bk —ay) < § the inequality

N N
Y IF(bk)G(b) — F <Y IF k) — Glar)) + Glax) (F(br) — Flar)) |

k=1 k

:N
<C Z G(ax |+CZ|F (bx) — F(ay)|

k=1

. (6)

This establishes absolute continuity of the function F'G. Since F'G is absolutely continuous the fundamental
theorem of calculus applies in the form

IN

b
/ (FG) (2)dz = F(b)G(b) — F(a)Gla).

All that is left is to show that
(FG)' (z) = F'(2)G(z) + F(x)G'(x)
holds for a.e. z € [a,b]. We write out the difference quotient

(FG)(z+ h) — (FG)(x)
h

G(z+h) — G(x)
h

F(x+h)— F(x)
) ™

=F(x+h) + G(x)
and take the limit A — 0. For almost every x the limit on the left exists and is by definition equal to (FG)’
since F'G is absolutely continuous. Similarly the limits on the right exists for almost every x and yield
FG' + GF' completing the proof.



