Measure and Integration: Example Sheet 8 (Solutions)

Fall 2016 [G. Holzegel]

March 20, 2017

1 Absolute Continuity I

a) This is simple. If C is the Lipschitz constant for F we choose $\delta<C^{-1} \epsilon$ if $\epsilon>0$ is prescribed. Then we have for any collection of disjoint intervals $\left(a_{k}, b_{k}\right), k=1, \ldots, N$ of $[a, b]$ with $\sum_{k=1}^{N}\left(b_{k}-a_{k}\right)<\delta$ that

$$
\sum_{n=1}^{N}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right| \leq \sum_{n=1}^{N} C\left|b_{k}-a_{k}\right| \leq C \delta<\epsilon
$$

b) Pick $f(x)=\sqrt{x}$ on the interval $[0,1]$. This is clearly not Lipschitz $(\sqrt{y}-\sqrt{0} \leq C(y-0)$ yields a contradiction for small enough y) but \sqrt{x} is absolutely continuous because the function $\frac{1}{2 \sqrt{x}}$ is integrable on $[0,1]$ and hence by the Fundamental Theorem of Calculus (Theorem 4.7 in the notes)

$$
\int_{0}^{x} \frac{1}{2 \sqrt{y}} d y=\sqrt{x}
$$

so the function \sqrt{x} is absolutely continuous.

2 The Cantor-Lebesgue function revisited one more time

a) There are many ways to write the g_{n} more or less explicitly. Here is one suggestion. The complement of \mathfrak{C}_{n} consists of the union of $2^{n}-1$ intervals ("the open intervals inbetween the 2^{n} closed intervals of \mathfrak{C}_{n} ") which we order from left to right and denote by I_{j}^{n} for $j=1, \ldots, 2^{n}-1$. On each of these intervals the function g_{n} is constant, its value being $f\left(I_{j}^{n}\right)=\left\{\frac{j}{2^{n}}\right\} .{ }^{1}$ We can then define

$$
g_{n}(x)=\left\{\begin{align*}
0 & \text { if } x=0 \tag{1}\\
1 & \text { if } x=1 \\
\frac{j}{2^{n}} & \text { if } x \in I_{j}^{n} \\
\text { linear } & \text { on each interval of } \mathfrak{C}_{n} \text { such that } g_{n} \text { is continuous }
\end{align*}\right.
$$

It is clear that each g_{n} is monotone increasing. Note that on each interval of \mathfrak{C}_{n} the function g_{n} increases by $\frac{1}{2^{n}}$. When going from g_{n} to g_{n+1} we are replacing in each interval of \mathfrak{C}_{n} a linear function with slope $\frac{3^{n}}{2^{n}}$ on an interval of length $\frac{1}{3^{n}}$ by a function linear with slope $\frac{3^{n+1}}{2^{n+1}}$ in the first and last third of the interval and constant in the middle. We easily see (draw a picture!)

$$
\begin{equation*}
\left|g_{n+1}(x)-g_{n}(x)\right| \leq \frac{1}{2^{n+1}} \tag{2}
\end{equation*}
$$

in each interval of \mathfrak{C}_{n} and since the $g_{n+1}(x)=g_{n}(x)$ in the complement of \mathfrak{C}_{n} the bound (2) holds uniformly for all $x \in[0,1]$. Therefore, in the telescopic sum

$$
g_{N}(x)=g_{1}(x)+\sum_{n=1}^{N-1}\left(g_{n+1}(x)-g_{n}(x)\right)
$$

[^0]the sum converges absolutely and uniformly in x we have that $g_{N}(x)$ converges uniformly to a $g(x)$. Since the limit of a uniformly converging sequence of continuous functions is again continuous, the limit $g(x)$ is continuous.

What is left is to show that g above is precisely the Cantor-Lebesgue function f from Example Sheets 1 and 3. Recall that on Example Sheet 1 we showed that the 2^{n} intervals constituting \mathfrak{C}_{n} can be written as

$$
C_{n,\left(a_{k}\right)}=\left[\sum_{k=1}^{n} a_{k} 3^{-k}, \sum_{k=1}^{n} a_{k} 3^{-k}+\frac{1}{3^{n}}\right]
$$

for $\left(a_{k}\right)_{k=1}^{n}$ a sequence with $a_{k} \in\{0,2\}$ (of which there are 2^{n} distinct ones). We first claim that the function g_{n} is a linear function on each $C_{n,\left(a_{k}\right)}$ with image the interval

$$
g_{n}\left(C_{n,\left(a_{k}\right)}\right)=\left[\sum_{k=1}^{n} b_{k} 2^{-k}, \sum_{k=1}^{n} b_{k} 2^{-k}+\frac{1}{2^{n}}\right]
$$

where $b_{k}=\frac{a_{k}}{2}$. This is certainly true for $n=1$. Assuming it now for n we observe that each interval of $C_{n+1,\left(\tilde{a}_{k}\right)}$ arises as the left or right third of an interval of $C_{n,\left(a_{k}\right)}$ as follows: The first n entries of \tilde{a}_{k} agree with those of a_{k}, and moreover $\tilde{a}_{n+1}=0$ if it is the left third and $\tilde{a}_{n+1}=2$ if it is the right third of $C_{n,\left(a_{k}\right)}$. Recalling how g_{n+1} is obtained from g_{n}, we observe that g_{n+1} maps the left third, i.e. $\left[\sum_{k=1}^{n} a_{k} 3^{-k}+\frac{0}{3^{n+1}}, \sum_{k=1}^{n} a_{k} 3^{-k}+\frac{0}{3^{n+1}}+\frac{1}{3^{n+1}}\right]$ (linearly) to $\left[\sum_{k=1}^{n} b_{k} 2^{-k}, \sum_{k=1}^{n} b_{k} 2^{-k}+\frac{1}{2^{n+1}}\right]$, the middle third to the constant $\sum_{k=1}^{n} b_{k} 2^{-k}+\frac{1}{2^{n+1}}$ and the right third, which is the interval $\left[\sum_{k=1}^{n} a_{k} 3^{-k}+\frac{2}{3^{n+1}}, \sum_{k=1}^{n} a_{k} 3^{-k}+\frac{2}{3^{n+1}}+\frac{1}{3^{n+1}}\right]$, (linearly) to the interval

$$
\left[\sum_{k=1}^{n} b_{k} 2^{-k}+\frac{1}{2^{n+1}}, \sum_{k=1}^{n} b_{k} 2^{-k}+\frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}\right]=\left[\sum_{k=1}^{n+1} \tilde{b}_{k} 2^{-k}, \sum_{k=1}^{n+1} \tilde{b}_{k} 2^{-k}+\frac{1}{2^{n+1}}\right]
$$

This proves the claim. Next consider an arbitrary point $x \in \mathfrak{C}$, which by Sheet 1 has unique representation

$$
\begin{equation*}
x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \tag{3}
\end{equation*}
$$

for some sequence $\left(a_{k}\right)$ with entries 0 or 2 . Moreover, defining $b_{k}=\frac{a_{k}}{2}$ we have (cf. Sheet 1)

$$
f(x)=\sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}}
$$

On the other hand, for any n, x lies in the interval $C_{n,\left(a_{k}\right)}$, where with a slight abuse of notation, $\left(a_{k}\right)_{k=1}^{n}$ denote the first n entires of the infinite sequence $\left(a_{k}\right)$ in (3). By the claim above

$$
\left|g_{n}(x)-\sum_{k=1}^{n} \frac{b_{k}}{2^{k}}\right| \leq \frac{1}{2^{n}}
$$

The triangle inequality and an elementary geometric sum allow us to conclude

$$
\left|f(x)-g_{n}(x)\right| \leq \sum_{k=n+1}^{\infty} \frac{b_{k}}{2^{k}}+\frac{1}{2^{n}} \leq \frac{2}{2^{n}}=\frac{1}{2^{n-1}}
$$

As this works for any n and $g_{n} \rightarrow g$ we conclude that g and f agree for $x \in \mathfrak{C}$. Now for $x \in \mathfrak{C}^{c}$ (the complement being in $[0,1]$) we have

$$
x \in \bigcup_{n=1}^{\infty}\left(\mathfrak{C}_{n}\right)^{c}
$$

so x lies in one of the open intervals of some \mathfrak{C}_{n}. But both f and g are defined to be constant there with the constant depending on the endpoints of the (open) interval which belong to \mathfrak{C} where f and g have already been shown to agree.
b) We claim that for $\epsilon=1 / 2$ the following statement is true: For any $\delta>0$ there exists a collection of disjoint intervals $\left(a_{k}, b_{k}\right), k=1, \ldots, N$ such that $\sum_{k=1}^{N}\left(b_{k}-a_{k}\right)<\delta$ but $\sum_{k=1}^{N}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right| \geq 1 / 2$. To find such a collection of disjoint intervals given $\delta>0$ we first pick n such that $\left(\frac{2}{3}\right)^{n}<\delta$. We then look at the interior of the $N=2^{n}$ closed disjoint intervals of $\mathfrak{C}_{n} \subset \mathfrak{C} \subset[0,1]$ denoted $\left(a_{k}, b_{k}\right)$, which, since each has length $\frac{1}{3^{n}}$ satisfy $\sum_{k=1}^{N}\left(b_{k}-a_{k}\right)=2^{n} \frac{1}{3^{n}}<\delta$. On the other hand, we have that f changes by $\frac{1}{2^{n}}$ on each of these intervals, so $f\left(b_{k}\right)-f\left(a_{k}\right)=\frac{1}{2^{n}}$ and hence $\sum_{k=1}^{N} f\left(b_{k}\right)-f\left(a_{k}\right)=1$. [Recall that the value of f at the endpoints of each interval of C_{n} is determined once and for all in the $n^{\text {th }}$ step of the construction in a)!]

3 Absolute Continuity II

a) Let $\mathcal{N} \subset[a, b]$ be a set of measure zero. We can assume wlog that a and b are not in \mathcal{N}. (If we show $f(\mathcal{N})$ has measure zero for such \mathcal{N} it also follows for $\mathcal{N} \cup\{a\} \cup\{b\}$.
Let $\epsilon>0$ be prescribed. Since f is absolutely continuous we can find a δ such that for any collection of disjoint intervals $\left(a_{k}, b_{k}\right), k=1, \ldots, N$ of $[a, b]$ with $\sum_{k=1}^{N}\left(b_{k}-a_{k}\right)<\delta$ we have

$$
\sum_{n=1}^{N}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\epsilon
$$

For this $\delta>0$ we find an open set \mathcal{U} with $\mathcal{N} \subset \mathcal{U} \subset(a, b)$ and $m(\mathcal{U})<\delta$. We can write \mathcal{U} as a disjoint union of open intervals $\left(a_{k}, b_{k}\right) \subset(a, b)$, that is $\mathcal{U}=\bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)$. We have that

$$
\begin{equation*}
f(\mathcal{N}) \subset f\left(\bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)\right)=\bigcup_{k=1}^{\infty} f\left(\left(a_{k}, b_{k}\right)\right) \tag{4}
\end{equation*}
$$

If f was monotone, we would have $\bigcup_{k=1}^{\infty} f\left(\left(a_{k}, b_{k}\right)\right)=\bigcup_{k=1}^{\infty}\left(f\left(a_{k}\right), f\left(b_{k}\right)\right)$ and by the absolute continuity

$$
\sum_{k=1}^{n}\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|<\epsilon
$$

for any n. Hence $\sum_{k=1}^{\infty}\left|f\left(a_{k}\right)-f\left(b_{k}\right)\right|<\epsilon$, which shows that $m\left(\bigcup_{k=1}^{\infty}\left(f\left(a_{k}\right), f\left(b_{k}\right)\right)\right)=0$ since the argument works for any $\epsilon>0$. It follows that $f(\mathcal{N})$ is a subset of a measure zero set and hence measurable with measure zero.
If f is not monotone we refine the above argument. We first note that (4) holds replacing the open intervals by closed intervals $\left[a_{k}, b_{k}\right]$. We then further replace each interval $\left[a_{k}, b_{k}\right]$ by a smaller interval $\left[\tilde{a}_{k}, \tilde{b}_{k}\right] \subset$ $\left[a_{k}, b_{k}\right]$ such that $f\left(\left[a_{k}, b_{k}\right]\right)=\left[f\left(\tilde{a}_{k}\right), f\left(\tilde{b}_{k}\right)\right]$ as follows: If m denotes the minimum and M the maximum of f on $\left[a_{k}, b_{k}\right]$ (which exist by continuity and compactness) we define $\tilde{a}_{k}=\min _{x \in\left[a_{k}, b_{k}\right]}\{x \mid f(x)=m\}$ (the smallest x which assumes the minimum) and $\tilde{b}_{k}=\max _{x \in\left[a_{k}, b_{k}\right]}\{x \mid f(x)=M\}$ (the largest x which assumes the maximum). We now have

$$
\begin{equation*}
f(\mathcal{N}) \subset \bigcup_{k=1}^{\infty}\left[f\left(\tilde{a}_{k}\right), f\left(\tilde{b}_{k}\right)\right] \tag{5}
\end{equation*}
$$

The sets $\left(\tilde{a}_{k}, \tilde{b}_{k}\right)$ are disjoint and $\sum_{k=1}^{n}\left(\tilde{b}_{k}-\tilde{a}_{k}\right)<\delta$ holds for any n. Hence by absolute continuity

$$
\sum_{k=1}^{\infty}\left(f\left(\tilde{b}_{k}\right)-f\left(\tilde{a}_{k}\right)\right)<\epsilon
$$

for any n. Since the left hand side controls the measure of the set on the right hand side of (5) we conclude $m(f(\mathcal{N}))=0$ as in the previous (monotone) case.
b) Let $E \subset[a, b]$ be a measurable set. By Proposition 2.4 of the notes we know that E is a union of an F_{σ} set with a set of measure zero,

$$
E=\bigcup_{k=1}^{\infty} F_{k} \cup \mathcal{N}
$$

where the F_{k} are closed and \mathcal{N} is a set of measure zero. Since the F_{k} are necessarily subsets of $[a, b]$ they are also compact. Since f is continuous the $f\left(F_{k}\right)$ are compact, hence measurable. Using that $f(\mathcal{N})$ is measurable with measure zero by part a) we obtain that $f(E)$ is a countable union of measurable set and is hence measurable.

4 Absolute Continuity III

We first show that $F G$ is also absolutely continuous. Let $\epsilon>0$ be given. Defining

$$
C=\max \left(\max _{x \in[a, b]} F(x), \max _{x \in[a, b]} G(x)\right) .
$$

and δ to be be the minimum of the two δ 's associated with $\tilde{\epsilon}=\frac{\epsilon}{2 C}$ in the definition of absolute continuity for F and G respectively. We then have, for any collection of disjoint intervals $\left(a_{k}, b_{k}\right), k=1, \ldots, N$ of $[a, b]$ with $\sum_{k=1}^{N}\left(b_{k}-a_{k}\right)<\delta$ the inequality

$$
\begin{align*}
\sum_{k=1}^{N}\left|F\left(b_{k}\right) G\left(b_{k}\right)-F\left(a_{k}\right) G\left(a_{k}\right)\right| & \leq \sum_{k=1}^{N}\left|F\left(b_{k}\right)\left(G\left(b_{k}\right)-G\left(a_{k}\right)\right)+G\left(a_{k}\right)\left(F\left(b_{k}\right)-F\left(a_{k}\right)\right)\right| \\
& \leq C \sum_{k=1}^{N}\left|G\left(b_{k}\right)-G\left(a_{k}\right)\right|+C \sum_{k=1}^{N}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right| \\
& \leq \epsilon \tag{6}
\end{align*}
$$

This establishes absolute continuity of the function $F G$. Since $F G$ is absolutely continuous the fundamental theorem of calculus applies in the form

$$
\int_{a}^{b}(F G)^{\prime}(x) d x=F(b) G(b)-F(a) G(a)
$$

All that is left is to show that

$$
(F G)^{\prime}(x)=F^{\prime}(x) G(x)+F(x) G^{\prime}(x)
$$

holds for a.e. $x \in[a, b]$. We write out the difference quotient

$$
\begin{equation*}
\frac{(F G)(x+h)-(F G)(x)}{h}=F(x+h) \frac{G(x+h)-G(x)}{h}+G(x) \frac{F(x+h)-F(x)}{h} \tag{7}
\end{equation*}
$$

and take the limit $h \rightarrow 0$. For almost every x the limit on the left exists and is by definition equal to $(F G)^{\prime}$ since $F G$ is absolutely continuous. Similarly the limits on the right exists for almost every x and yield $F G^{\prime}+G F^{\prime}$ completing the proof.

[^0]: ${ }^{1}$ Note that the I_{j}^{n} do not all have the same length!

