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1 Absolute Continuity I

a) This is simple. If C is the Lipschitz constant for F we choose δ < C−1ε if ε > 0 is prescribed. Then we

have for any collection of disjoint intervals (ak, bk), k = 1, ..., N of [a, b] with
∑N
k=1(bk − ak) < δ that

N∑
n=1

|F (bk)− F (ak)| ≤
N∑
n=1

C|bk − ak| ≤ Cδ < ε .

b) Pick f(x) =
√
x on the interval [0, 1]. This is clearly not Lipschitz (

√
y −
√

0 ≤ C(y − 0) yields a
contradiction for small enough y) but

√
x is absolutely continuous because the function 1

2
√
x

is integrable

on [0, 1] and hence by the Fundamental Theorem of Calculus (Theorem 4.7 in the notes)∫ x

0

1

2
√
y
dy =

√
x ,

so the function
√
x is absolutely continuous.

2 The Cantor-Lebesgue function revisited one more time

a) There are many ways to write the gn more or less explicitly. Here is one suggestion. The complement of
Cn consists of the union of 2n− 1 intervals (“the open intervals inbetween the 2n closed intervals of Cn”)
which we order from left to right and denote by Inj for j = 1, ..., 2n − 1. On each of these intervals the

function gn is constant, its value being f
(
Inj
)

= { j2n }.
1 We can then define

gn (x) =


0 if x = 0,
1 if x = 1,
j
2n if x ∈ Inj ,

linear on each interval of Cn such that gn is continuous

(1)

It is clear that each gn is monotone increasing. Note that on each interval of Cn the function gn increases
by 1

2n . When going from gn to gn+1 we are replacing in each interval of Cn a linear function with slope 3n

2n

on an interval of length 1
3n by a function linear with slope 3n+1

2n+1 in the first and last third of the interval
and constant in the middle. We easily see (draw a picture!)

|gn+1(x)− gn(x)| ≤ 1

2n+1
(2)

in each interval of Cn and since the gn+1(x) = gn(x) in the complement of Cn the bound (2) holds
uniformly for all x ∈ [0, 1]. Therefore, in the telescopic sum

gN (x) = g1(x) +

N−1∑
n=1

(gn+1(x)− gn(x))

1Note that the Inj do not all have the same length!
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the sum converges absolutely and uniformly in x we have that gN (x) converges uniformly to a g(x). Since
the limit of a uniformly converging sequence of continuous functions is again continuous, the limit g(x)
is continuous.

What is left is to show that g above is precisely the Cantor-Lebesgue function f from Example Sheets 1
and 3. Recall that on Example Sheet 1 we showed that the 2n intervals constituting Cn can be written as

Cn,(ak) =

[
n∑
k=1

ak3−k,

n∑
k=1

ak3−k +
1

3n

]

for (ak)nk=1 a sequence with ak ∈ {0, 2} (of which there are 2n distinct ones). We first claim that the
function gn is a linear function on each Cn,(ak) with image the interval

gn
(
Cn,(ak)

)
=

[
n∑
k=1

bk2−k,

n∑
k=1

bk2−k +
1

2n

]
where bk = ak

2 . This is certainly true for n = 1. Assuming it now for n we observe that each inter-
val of Cn+1,(ãk) arises as the left or right third of an interval of Cn,(ak) as follows: The first n entries
of ãk agree with those of ak, and moreover ãn+1 = 0 if it is the left third and ãn+1 = 2 if it is the
right third of Cn,(ak). Recalling how gn+1 is obtained from gn, we observe that gn+1 maps the left third,

i.e.
[∑n

k=1 ak3−k + 0
3n+1 ,

∑n
k=1 ak3−k + 0

3n+1 + 1
3n+1

]
(linearly) to

[∑n
k=1 bk2−k,

∑n
k=1 bk2−k + 1

2n+1

]
, the

middle third to the constant
∑n
k=1 bk2−k + 1

2n+1 and the right third, which is the interval[∑n
k=1 ak3−k + 2

3n+1 ,
∑n
k=1 ak3−k + 2

3n+1 + 1
3n+1

]
, (linearly) to the interval[

n∑
k=1

bk2−k +
1

2n+1
,

n∑
k=1

bk2−k +
1

2n+1
+

1

2n+1

]
=

[
n+1∑
k=1

b̃k2−k,

n+1∑
k=1

b̃k2−k +
1

2n+1

]
This proves the claim. Next consider an arbitrary point x ∈ C, which by Sheet 1 has unique representation

x =

∞∑
k=1

ak3−k (3)

for some sequence (ak) with entries 0 or 2. Moreover, defining bk = ak
2 we have (cf. Sheet 1)

f(x) =

∞∑
k=1

bk
2k
.

On the other hand, for any n, x lies in the interval Cn,(ak), where with a slight abuse of notation, (ak)nk=1

denote the first n entires of the infinite sequence (ak) in (3). By the claim above

|gn(x)−
n∑
k=1

bk
2k
| ≤ 1

2n
.

The triangle inequality and an elementary geometric sum allow us to conclude

|f(x)− gn(x)| ≤
∞∑

k=n+1

bk
2k

+
1

2n
≤ 2

2n
=

1

2n−1

As this works for any n and gn → g we conclude that g and f agree for x ∈ C. Now for x ∈ Cc (the
complement being in [0, 1]) we have

x ∈
∞⋃
n=1

(Cn)c

so x lies in one of the open intervals of some Cn. But both f and g are defined to be constant there with
the constant depending on the endpoints of the (open) interval which belong to C where f and g have
already been shown to agree.
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b) We claim that for ε = 1/2 the following statement is true: For any δ > 0 there exists a collection of

disjoint intervals (ak, bk), k = 1, ..., N such that
∑N
k=1(bk − ak) < δ but

∑N
k=1 |f(bk)− f(ak)| ≥ 1/2. To

find such a collection of disjoint intervals given δ > 0 we first pick n such that ( 2
3 )n < δ. We then look

at the interior of the N = 2n closed disjoint intervals of Cn ⊂ C ⊂ [0, 1] denoted (ak, bk), which, since

each has length 1
3n satisfy

∑N
k=1(bk − ak) = 2n 1

3n < δ. On the other hand, we have that f changes by
1
2n on each of these intervals, so f(bk)− f(ak) = 1

2n and hence
∑N
k=1 f(bk)− f(ak) = 1. [Recall that the

value of f at the endpoints of each interval of Cn is determined once and for all in the nth step of the
construction in a)!]

3 Absolute Continuity II

a) Let N ⊂ [a, b] be a set of measure zero. We can assume wlog that a and b are not in N . (If we show
f (N ) has measure zero for such N it also follows for N ∪ {a} ∪ {b}.)
Let ε > 0 be prescribed. Since f is absolutely continuous we can find a δ such that for any collection of
disjoint intervals (ak, bk), k = 1, ..., N of [a, b] with

∑N
k=1(bk − ak) < δ we have

N∑
n=1

|f(bk)− f(ak)| < ε .

For this δ > 0 we find an open set U with N ⊂ U ⊂ (a, b) and m (U) < δ. We can write U as a disjoint
union of open intervals (ak, bk) ⊂ (a, b), that is U =

⋃∞
k=1 (ak, bk). We have that

f(N ) ⊂ f

( ∞⋃
k=1

(ak, bk)

)
=

∞⋃
k=1

f ((ak, bk)) . (4)

If f was monotone, we would have
⋃∞
k=1 f ((ak, bk)) =

⋃∞
k=1(f(ak), f(bk)) and by the absolute continuity

n∑
k=1

|f(ak)− f(bk)| < ε

for any n. Hence
∑∞
k=1 |f(ak) − f(bk)| < ε, which shows that m (

⋃∞
k=1(f(ak), f(bk))) = 0 since the

argument works for any ε > 0. It follows that f (N ) is a subset of a measure zero set and hence
measurable with measure zero.

If f is not monotone we refine the above argument. We first note that (4) holds replacing the open intervals

by closed intervals [ak, bk]. We then further replace each interval [ak, bk] by a smaller interval
[
ãk, b̃k

]
⊂

[ak, bk] such that f ([ak, bk]) =
[
f (ãk) , f(b̃k)

]
as follows: If m denotes the minimum and M the maximum

of f on [ak, bk] (which exist by continuity and compactness) we define ãk = minx∈[ak,bk]{x | f(x) = m}
(the smallest x which assumes the minimum) and b̃k = maxx∈[ak,bk]{x | f(x) = M} (the largest x which
assumes the maximum). We now have

f(N ) ⊂
∞⋃
k=1

[
f(ãk), f(b̃k)

]
. (5)

The sets
(
ãk, b̃k

)
are disjoint and

∑n
k=1

(
b̃k − ãk

)
< δ holds for any n. Hence by absolute continuity

∞∑
k=1

(
f(b̃k)− f (ãk)

)
< ε

for any n. Since the left hand side controls the measure of the set on the right hand side of (5) we
conclude m (f (N )) = 0 as in the previous (monotone) case.
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b) Let E ⊂ [a, b] be a measurable set. By Proposition 2.4 of the notes we know that E is a union of an Fσ
set with a set of measure zero,

E =

∞⋃
k=1

Fk ∪N ,

where the Fk are closed and N is a set of measure zero. Since the Fk are necessarily subsets of [a, b] they
are also compact. Since f is continuous the f(Fk) are compact, hence measurable. Using that f (N ) is
measurable with measure zero by part a) we obtain that f (E) is a countable union of measurable set
and is hence measurable.

4 Absolute Continuity III

We first show that FG is also absolutely continuous. Let ε > 0 be given. Defining

C = max

(
max
x∈[a,b]

F (x), max
x∈[a,b]

G(x)

)
.

and δ to be be the minimum of the two δ’s associated with ε̃ = ε
2C in the definition of absolute continuity

for F and G respectively. We then have, for any collection of disjoint intervals (ak, bk), k = 1, ..., N of [a, b]

with
∑N
k=1(bk − ak) < δ the inequality

N∑
k=1

|F (bk)G(bk)− F (ak)G(ak)| ≤
N∑
k=1

|F (bk) (G(bk)−G(ak)) +G(ak) (F (bk)− F (ak)) |

≤ C
N∑
k=1

|G(bk)−G(ak)|+ C

N∑
k=1

|F (bk)− F (ak)|

≤ ε . (6)

This establishes absolute continuity of the function FG. Since FG is absolutely continuous the fundamental
theorem of calculus applies in the form∫ b

a

(FG)
′
(x)dx = F (b)G(b)− F (a)G(a) .

All that is left is to show that
(FG)

′
(x) = F ′(x)G(x) + F (x)G′(x)

holds for a.e. x ∈ [a, b]. We write out the difference quotient

(FG)(x+ h)− (FG)(x)

h
= F (x+ h)

G(x+ h)−G(x)

h
+G(x)

F (x+ h)− F (x)

h
(7)

and take the limit h→ 0. For almost every x the limit on the left exists and is by definition equal to (FG)′

since FG is absolutely continuous. Similarly the limits on the right exists for almost every x and yield
FG′ +GF ′ completing the proof.
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