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1 Modes of convergence

a) The function in i) converges to the zero function uniformly. It has L1-norm equal to 1 for all n and hence
does not converge to the zero function in L1.

The function in ii) converges to zero pointwise but not uniformly. The L1-norm is equal to 1 for all n
and hence the function does not converge to the zero function in L1.

The function in iii) converges to zero pointwise almost everywhere (everywhere except at x = 0). The
L1-norm is again equal to 1 for all n so fn does not converge in L1 to the zero function.

b) Define the following sequence of functions. We let

• f1 = χ[0,1].

• f2 = χ[0,1/2] and f3 = χ[1/2,1]

• f4 = χ[0,1/4] and f5 = χ[1/4,1/2] and f6 = χ[1/2,3/4] and f7 = χ[3/4,1]

• ...

I leave it to you to find an explicit expression for the general fn.

It is clear from the definition that fn converges to zero in L1. However, fn does not converge pointwise to
0 for any x. This is because if fn (x)→ 0 for some x ∈ [0, 1] then one could find N such that |fn(x)| < 1

2
for any n ≥ N . However, one can clearly find an n larger than N such that |fn(x)| = 1 holds.

You should compare this with Corollary 3.1 of the notes (existence of a subsequence which converges
pointwise).

c) This is a consequence of the Chebychev inequality: For fixed ε > 0 we have

m ({x | |fn(x)− f(x)| ≥ ε}) ≤ 1

ε

∫
|fn(x)− f(x)|

and the right hand side goes to zero as n→∞ proving that fn → f in measure.

The example i) in a) converges to zero in measure but not in L1.

2 Application of Fubini’s Theorem

We follow the hint and let A = (0,∞)× [0, 1] and consider the two-dimensional integral∫
A

dxdyf(x, y) :=

∫
A

dxdy e−sx sin (2xy)

We first verify that f is integrable over A by applying Tonelli’s theorem. Indeed the iterated integral∫ 1

0

dy

∫ ∞
0

dx|f(x, y)| ≤
∫ 1

0

dy

∫ ∞
0

dx e−sx <∞
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is finite for s > 0, hence by Tonelli f is integrable over I. By Fubini we can now compute
∫
A
f(x, y) by

either of the iterated integrals

I1 =

∫ 1

0

dy

∫ ∞
0

dx e−sx sin (2xy) or I2 =

∫ ∞
0

dx

∫ 1

0

dy e−sx sin (2xy)

and the results will agree, I1 = I2. We now compute for I1 using integration by parts∫ ∞
0

dx e−sx sin (2xy) =

∫ ∞
0

1

s
e−sx cos(2xy)2y =

2y

s2
−
∫ ∞
0

dx
1

s2
e−sx sin (2xy) 4y2

and hence ∫ ∞
0

dx e−sx sin (2xy) =
2y

s2
1

1 + 4y2

s2

=
2y

s2 + 4y2

Integrating this in y (using substitution) yields

I1 =

∫ 1

0

dy

∫ ∞
0

dx e−sx sin (2xy) =
1

4
log

(
1 +

4

s2

)
.

For I2 we observe

I2 =

∫ ∞
0

dxe−sx
(

1− cos(2x)

2x

)
and that 1− cos(2x) = 1− cos(x+ x) = 1− cos2 x+ sin2 x = 2 sin2 x.

3 Application of the Dominated Convergence Theorem

We establish the identity at fixed t ∈ I. We first define the difference quotient

hn (t, x) =
f (t+ tn, x)− f (t, x)

tn

where (tn) is any sequence converging to zero with tn 6= 0 for all n and such that t + tn ∈ I. Clearly
hn (t, x) → ∂tf (t, x) for all x ∈ E. Hence ∂tf (t, x) is a measurable function on E and in view of the
assumption |∂tf (t, x) | ≤ g(x) also integrable. By the mean value theorem

hn (t, x) = f ′
(
t̃, x
)

for a t̃ ∈ (t, t+ tn) ⊂ I and hence by assumption |hn (t, x) | ≤ g(x) for sufficiently large n. It follows that
the dominant convergence theorem applies to hn (t, x) producing

lim
n→∞

∫
E

hn (t, x) =

∫
E

∂f

∂t
(t, x) <∞ .

Finally, observe that

lim
n→∞

∫
E

hn (t, x) = lim
n→∞

∫
E
f (t+ tn, x)−

∫
E
f (t, x)

tn
=

d

dt

∫
E

f (t, x) dx ,

the last step following since we proved the result for any sequence (tn) converging to zero.

4 The Gamma function

We fix 0 < t0 < 1 and apply the previous problem 3 with I = (t0,∞) and E = (0,∞) . Clearly f defined by
f (t, x) = e−tx is in L1 (E) for any t ∈ (t0,∞) and the derivative satisfies

|∂tf (t, x) | = e−txx ≤ g(x) := e−t0xx for x ∈ E.
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and g is clearly integrable. Problem 3 now implies

d

dt

∫ ∞
0

e−txdx =

∫ ∞
0

e−tx (−x) dx = − 1

t2

holds for t ∈ (t0,∞). In particular ∫ ∞
0

e−xx1dx = 1 ,

which is the desired identity for n = 1. We can now use induction to establish the formula∫ ∞
0

e−txxn dx =
n!

tn+1
(1)

which when evaluated at t = 1 produces the desired identity. Indeed, we established this formula for n = 1.
Assuming it holds for n− 1 with n ≥ 2 we differentiate the formula∫ ∞

0

e−txxn−1 dx =
(n− 1)!

tn

with respect to t by applying once more Problem 3 with the same I and E as above but with f replaced
by e−txxn−1 (whose partial derivative is dominated by the integrable function e−t0xxn). This establishes (1).

Remark: Note that the result itself can also be proven using integration by parts and induction. The
above solution avoids the integration by parts formula.

5 Another Application of Fubini

The fact that |f(x)− f(y)| is integrable on the unit square means that we can apply Fubini’s theorem and
conclude that the iterated integral is finite:∫ 1

0

dx

∫ 1

0

dy|f(x)− f(y)| <∞

from which we conclude that ∫ 1

0

dy|f(x)− f(y)| <∞

for almost every x ∈ (0, 1). Let x0 be such an x. Then∫ 1

0

dy|f(x0)− f(y)| <∞ .

From this we conclude by the triangle inequality that∫ 1

0

dy|f(y)|dy ≤
∫ 1

0

dy|f(y)− f(x0)|dy + 1 · |f(x0)| <∞ , (2)

with the last inequality following from the fact that f is finite-valued (hence |f(x0)| <∞). Inequality (2) is
the desired statement that f in integrable on [0, 1].
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