Measure and Integration: Example Sheet 6 (Solutions)

Fall 2016 [G. Holzegel]

March 30, 2017

1 Modes of convergence

a) The function in i) converges to the zero function uniformly. It has L^{1}-norm equal to 1 for all n and hence does not converge to the zero function in L^{1}.
The function in $i i$) converges to zero pointwise but not uniformly. The L^{1}-norm is equal to 1 for all n and hence the function does not converge to the zero function in L^{1}.
The function in $i i i$) converges to zero pointwise almost everywhere (everywhere except at $x=0$). The L^{1}-norm is again equal to 1 for all n so f_{n} does not converge in L^{1} to the zero function.
b) Define the following sequence of functions. We let

- $f_{1}=\chi_{[0,1]}$.
- $f_{2}=\chi_{[0,1 / 2]}$ and $f_{3}=\chi_{[1 / 2,1]}$
- $f_{4}=\chi_{[0,1 / 4]}$ and $f_{5}=\chi_{[1 / 4,1 / 2]}$ and $f_{6}=\chi_{[1 / 2,3 / 4]}$ and $f_{7}=\chi_{[3 / 4,1]}$
- ...

I leave it to you to find an explicit expression for the general f_{n}.
It is clear from the definition that f_{n} converges to zero in L^{1}. However, f_{n} does not converge pointwise to 0 for any x. This is because if $f_{n}(x) \rightarrow 0$ for some $x \in[0,1]$ then one could find N such that $\left|f_{n}(x)\right|<\frac{1}{2}$ for any $n \geq N$. However, one can clearly find an n larger than N such that $\left|f_{n}(x)\right|=1$ holds.
You should compare this with Corollary 3.1 of the notes (existence of a subsequence which converges pointwise).
c) This is a consequence of the Chebychev inequality: For fixed $\epsilon>0$ we have

$$
m\left(\left\{x\left|\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq \frac{1}{\epsilon} \int\left|f_{n}(x)-f(x)\right|\right.
$$

and the right hand side goes to zero as $n \rightarrow \infty$ proving that $f_{n} \rightarrow f$ in measure.
The example i) in a) converges to zero in measure but not in L^{1}.

2 Application of Fubini's Theorem

We follow the hint and let $A=(0, \infty) \times[0,1]$ and consider the two-dimensional integral

$$
\int_{A} d x d y f(x, y):=\int_{A} d x d y e^{-s x} \sin (2 x y)
$$

We first verify that f is integrable over A by applying Tonelli's theorem. Indeed the iterated integral

$$
\int_{0}^{1} d y \int_{0}^{\infty} d x|f(x, y)| \leq \int_{0}^{1} d y \int_{0}^{\infty} d x e^{-s x}<\infty
$$

is finite for $s>0$, hence by Tonelli f is integrable over I. By Fubini we can now compute $\int_{A} f(x, y)$ by either of the iterated integrals

$$
I_{1}=\int_{0}^{1} d y \int_{0}^{\infty} d x e^{-s x} \sin (2 x y) \quad \text { or } \quad I_{2}=\int_{0}^{\infty} d x \int_{0}^{1} d y e^{-s x} \sin (2 x y)
$$

and the results will agree, $I_{1}=I_{2}$. We now compute for I_{1} using integration by parts

$$
\int_{0}^{\infty} d x e^{-s x} \sin (2 x y)=\int_{0}^{\infty} \frac{1}{s} e^{-s x} \cos (2 x y) 2 y=\frac{2 y}{s^{2}}-\int_{0}^{\infty} d x \frac{1}{s^{2}} e^{-s x} \sin (2 x y) 4 y^{2}
$$

and hence

$$
\int_{0}^{\infty} d x e^{-s x} \sin (2 x y)=\frac{2 y}{s^{2}} \frac{1}{1+\frac{4 y^{2}}{s^{2}}}=\frac{2 y}{s^{2}+4 y^{2}}
$$

Integrating this in y (using substitution) yields

$$
I_{1}=\int_{0}^{1} d y \int_{0}^{\infty} d x e^{-s x} \sin (2 x y)=\frac{1}{4} \log \left(1+\frac{4}{s^{2}}\right)
$$

For I_{2} we observe

$$
I_{2}=\int_{0}^{\infty} d x e^{-s x}\left(\frac{1-\cos (2 x)}{2 x}\right)
$$

and that $1-\cos (2 x)=1-\cos (x+x)=1-\cos ^{2} x+\sin ^{2} x=2 \sin ^{2} x$.

3 Application of the Dominated Convergence Theorem

We establish the identity at fixed $t \in I$. We first define the difference quotient

$$
h_{n}(t, x)=\frac{f\left(t+t_{n}, x\right)-f(t, x)}{t_{n}}
$$

where $\left(t_{n}\right)$ is any sequence converging to zero with $t_{n} \neq 0$ for all n and such that $t+t_{n} \in I$. Clearly $h_{n}(t, x) \rightarrow \partial_{t} f(t, x)$ for all $x \in E$. Hence $\partial_{t} f(t, x)$ is a measurable function on E and in view of the assumption $\left|\partial_{t} f(t, x)\right| \leq g(x)$ also integrable. By the mean value theorem

$$
h_{n}(t, x)=f^{\prime}(\tilde{t}, x)
$$

for a $\tilde{t} \in\left(t, t+t_{n}\right) \subset I$ and hence by assumption $\left|h_{n}(t, x)\right| \leq g(x)$ for sufficiently large n. It follows that the dominant convergence theorem applies to $h_{n}(t, x)$ producing

$$
\lim _{n \rightarrow \infty} \int_{E} h_{n}(t, x)=\int_{E} \frac{\partial f}{\partial t}(t, x)<\infty
$$

Finally, observe that

$$
\lim _{n \rightarrow \infty} \int_{E} h_{n}(t, x)=\lim _{n \rightarrow \infty} \frac{\int_{E} f\left(t+t_{n}, x\right)-\int_{E} f(t, x)}{t_{n}}=\frac{d}{d t} \int_{E} f(t, x) d x
$$

the last step following since we proved the result for any sequence $\left(t_{n}\right)$ converging to zero.

4 The Gamma function

We fix $0<t_{0}<1$ and apply the previous problem 3 with $I=\left(t_{0}, \infty\right)$ and $E=(0, \infty)$. Clearly f defined by $f(t, x)=e^{-t x}$ is in $L^{1}(E)$ for any $t \in\left(t_{0}, \infty\right)$ and the derivative satisfies

$$
\left|\partial_{t} f(t, x)\right|=e^{-t x} x \leq g(x):=e^{-t_{0} x} x \quad \text { for } x \in E
$$

and g is clearly integrable. Problem 3 now implies

$$
\frac{d}{d t} \int_{0}^{\infty} e^{-t x} d x=\int_{0}^{\infty} e^{-t x}(-x) d x=-\frac{1}{t^{2}}
$$

holds for $t \in\left(t_{0}, \infty\right)$. In particular

$$
\int_{0}^{\infty} e^{-x} x^{1} d x=1
$$

which is the desired identity for $n=1$. We can now use induction to establish the formula

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t x} x^{n} d x=\frac{n!}{t^{n+1}} \tag{1}
\end{equation*}
$$

which when evaluated at $t=1$ produces the desired identity. Indeed, we established this formula for $n=1$. Assuming it holds for $n-1$ with $n \geq 2$ we differentiate the formula

$$
\int_{0}^{\infty} e^{-t x} x^{n-1} d x=\frac{(n-1)!}{t^{n}}
$$

with respect to t by applying once more Problem 3 with the same I and E as above but with f replaced by $e^{-t x} x^{n-1}$ (whose partial derivative is dominated by the integrable function $e^{-t_{0} x} x^{n}$). This establishes (1).

Remark: Note that the result itself can also be proven using integration by parts and induction. The above solution avoids the integration by parts formula.

5 Another Application of Fubini

The fact that $|f(x)-f(y)|$ is integrable on the unit square means that we can apply Fubini's theorem and conclude that the iterated integral is finite:

$$
\int_{0}^{1} d x \int_{0}^{1} d y|f(x)-f(y)|<\infty
$$

from which we conclude that

$$
\int_{0}^{1} d y|f(x)-f(y)|<\infty
$$

for almost every $x \in(0,1)$. Let x_{0} be such an x. Then

$$
\int_{0}^{1} d y\left|f\left(x_{0}\right)-f(y)\right|<\infty
$$

From this we conclude by the triangle inequality that

$$
\begin{equation*}
\int_{0}^{1} d y|f(y)| d y \leq \int_{0}^{1} d y\left|f(y)-f\left(x_{0}\right)\right| d y+1 \cdot\left|f\left(x_{0}\right)\right|<\infty \tag{2}
\end{equation*}
$$

with the last inequality following from the fact that f is finite-valued (hence $\left|f\left(x_{0}\right)\right|<\infty$). Inequality (2) is the desired statement that f in integrable on $[0,1]$.

