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1 Hardy-Littlewood maximal function I

Recall the maximal function is defined by

f? (x) = sup
B3x

1

m(B)

∫
B

|f(y)|dy

where we take the sup over all balls containing x. Note that one can take either open or closed balls here.
[Indeed, the sup taken over closed balls containing x is clearly bigger or equal than the sup taken over
open balls containing x as the closure of any open ball containing x also contains x. Conversely, if the sup
taken over closed balls containing x is equal to k, then, given any δ > 0 there is a closed ball containing x
with 1

m(B̄)

∫
B̄
|f(y)|dy ≥ k − δ and by the absolute continuity of the integral an open ball B′ with B̄ ⊂ B′

with 1
m(B′)

∫
B′
|f(y)|dy ≥ k − 2δ. Since this works for any δ we must have that the sup over the open

balls containing x is also greater or equal to k.] For the present question taking the sup over closed balls
containing x is more convenient.

a) If f is not zero almost everywhere, we necessarily have∫
Rd

|f(y)|dy ≥ δ (1)

for some δ > 0 (recall we proved that ‖f‖L1 = 0 implies f is zero almost everywhere). In particular,
there exists some ball B = B̄ (0, R) such that∫

B

|f(y)|dy ≥ δ

2
.

[Indeed, assuming
∫
B
|f(y)|dy < δ

2 for any B = B̄ (0, R) we pick ε = δ
4 and a ball B′ = B̄ (0, R′) with∫

Rd\B′ |f(y)|dy < δ
4 (cf. Proposition 3.5 in the notes) which is in contradiction with (1).] Now

• for 1 ≤ |x| < R we choose the ball B = B(0, R) which contains x to get a lower bound on f?(x)
through f?(x) ≥ δ

2kdRd ≥ δ
2kdRd

1
|x|d , where m (B (0, R)) = kdR

d.1

• for |x| ≥ R we choose the ball B̄ (0, |x|) ⊃ B̄ (0, R) which contains x to obtain a lower bound on f?,
namely

f?(x) ≥ δ

2 · kd|x|d
.

Choosing c = min
(

δ
2kdRd ,

δ
2·kd

)
the desired estimate on the maximal function follows. The non-integrability

easily follows in polar coordinates (or using the method carried out in Question 2 below).

1We did not compute the constant kd = π
n
2

Γ(n
2

+1)
explicitly in class but m (B(0, R)) ∼ Rd follows directly from the scaling

property of the Lebesgue measure (which we did prove) and the fact that the unit ball has finite measure.
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b) By the estimate from part a) we have

{x | f?(x) > α} ⊃ {x | 1 ≤ |x| ≤ c
1
d

α
1
d

}

for c = 1
2kd

since the assumption
∫
B(0,1)

|f | = 1 implies δ = 1 and R = 1 in part a). Hence for α < 2−dc

we have therefore

m ({x | f?(x) > α}) ≥ kd
( c
α
− 1
)
≥ kdc

2
· 1

α
.

2 Hardy-Littlewood maximal function II

a) The most straightforward way would be to compute∫
R
f(x) dx = 2

∫ 1
2

0

f(x)dx = 2

∫ 1
2

0

1

r (log r)
2 dr = 2

∫ 1
2

0

dr
d

dr

−1

log r
=

2

log 2

but this requires careful justification of the fundamental theorem of calculus and the limit r → 0 (which
you should provide).

Here is a way to do it from first principles. We define the sets

E2n :=
{
x | 1

2n+1
< x ≤ 1

2n

}
which are disjoint and whose union is (0, 1/2]. We have (by MCT)∫

R
f(x) dx = 2

∫
(0,1/2]

f(x) dx = 2

∞∑
n=1

∫
E2n

f(x) ddx . (2)

Now the integral can be estimated by∫
E2n

f(x) ≤ m (E2n) 2n+1 1

n2(log 2)2
=

[
1

2n
− 1

2n+1

]
2n+1 1

n2(log 2)2
=

1

(log 2)2

1

n2
,

and this is summable in n and hence the right hand side of (2) is finite.

b) For x = 0 the inequality holds trivially. For 0 < x ≤ 1
2 , the interval I =

[
e−

1
x , x
]

contains x and satisfies

m (I) < x. We have by the fundamental theorem of calculus∫ x

e−
1
x

f(x)dx =

∫ x

e−
1
x

1

r (log r)
2 dr =

∫ x

e−
1
x

dr
d

dr

−1

log r
= −x− 1

log(x)
≥ 1

log 1
x

(
1− x log

(
1

x

))
and since x log

(
1
x

)
≤ 1

2 in [0, 1/2] we conclude

f?(x) ≥ 1

x

∫ x

e−
1
x

f(x)dx ≥ 1

2x log(1/x)
.

Obviously, the same argument works for − 1
2 ≤ x < 0 thereby proving the desired bound for all |x| < 1

2 .

We finally show that f? is not integrable locally around 0 adapting the idea in a). Using the notation
E2n from a) and (2) with f? replacing f we now establish a lower bound for the integral∫

E2n

f?(x) ≥ m (E2n) 2n
1

(n+ 1)(log 2)
=

[
1

2n
− 1

2n+1

]
2n

1

(n+ 1)(log 2)
=

1

2 log 2(n+ 1)
.

The sum over n now diverges and hence the function f? is not integrable over (0, 1/2).
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3 Points of Lebesgue density

a) Choosing the characteristic function χE for f in the Lebesgue differentiation theorem we obtain the
formula

χE(x) = lim
m(B)→0
x∈B

1

m (B)

∫
B

χE = lim
m(B)→0
x∈B

m (B ∩ E)

m (B)
.

for almost every x. Thus for almost every x ∈ E, x is a point of Lebesgue density as the left hand side
is 0. For almost every x /∈ E we have

lim
m(B)→0
x∈B

m (B ∩ E)

m (B)
= 0 (3)

so in particular almost every x /∈ E is not a point of Lebesgue density.

Remark: Note that almost everywhere is important here. In general, there can be points in E for which

limm(B)→0
x∈B

m(B∩E)
m(B) takes any value between 0 and 1. The closed unit square for instance has points where

this limit is equal to 1/2 and 1/4 (where?) but of course these points form a measure 0 set.

b) By assumption we have for some α > 0

m (I ∩ E)

m (I)
≥ α > 0

for all intervals I. By part a), in particular (3), we must have

lim
m(I)→0
x∈I

m (I ∩ E)

m (I)
= 0 (4)

for almost all x ∈ Ec. If E ⊂ [0, 1] has measure 1− δ for δ > 0, then the set [0, 1] \ E ⊂ Ec has measure
δ > 0 and hence in view of (4) there are points x ∈ Ec and intervals I such that

m (I ∩ E)

m (I)
<
α

2
.

Contradiction. [Note that if [0, 1] \ E had measure 0 we would not be able to conclude that (4) held for
any point in [0, 1] \ E because it only holds up to a measure zero set!]

4 Functions of bounded variation I

To show continuity from the left at t > a with ε > 0 prescribed, we find a partition t0 = a, . . . , tN = t with

Tf (a, t) ≥
N∑
n=1

|f(ti)− f(ti−1)| ≥ Tf (a, t)− ε

2
. (5)

Refining this partition if necessary we can assume – using the continuity of f – that tN−1 is sufficiently
close to t such that |f(s) − f(t)| < ε

2 holds for all s ∈ (tN−1, t). Now for any such s, the refined partition
t0, . . . , tN−1, s, tN = t still satisfies (5) and hence for such s

Tf (a, s) ≥
N−1∑
n=1

|f(ti)− f(ti−1)|+ |f(s)− f(tN−1)| ≥ Tf (a, t)− ε ,

where we add and subtract |f(t)− f(s)| to verify the last inequality. This show continuity from the left as
we have 0 ≤ Tf (a, t)− Tf (a, s) ≤ ε for all s ∈ (tN−1, t) with tN−1 < t depending on ε > 0.
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To show continuity at t from the right we choose a partition t0 = t, t1 . . . , tN = b such that

Tf (t, b) ≥
N∑
n=1

|f(ti)− f(ti−1)| ≥ Tf (t, b)− ε

2
(6)

By refining the partition if necessary we can assume – using the continuity of f – that the first interval of
the partition (t0 = t, t1) is sufficiently small so that |f(t) − f(s)| < ε

2 holds for all s ∈ (t, t1). This fixes t1
(depending on ε). The refined partition t0 = t, s, t1, ..., tN still satisfies (6) and hence

Tf (t, b)− ε

2
≤ |f(t)− f(s)|+ |f(s)− f(t1)|+

N−1∑
n=2

|f(ti)− f(ti−1)| ≤ Tf (s, b) +
ε

2

holds for any s ∈ (t, t1). The triangle inequalities implies Tf (t, s) ≤ ε for all such s and another application
of the triangle inequality yields

0 ≤ Tf (a, s)− Tf (a, t) ≤ T (t, s) ≤ ε for all s ∈ (t, t1).

5 Functions of bounded variation II

a) We first establish that if a > b, then f is of BV. We have

f ′ (x) = axa−1 sin
(
x−b

)
− bxa−b−1 cos

(
x−b

)
for x ∈ (0, 1) and f ′ is also integrable in [0, 1] in view of

|f ′(x)| ≤ a · xa−1 + b · xa−b−1 and hence

∫ 1

0

dx|f ′ (x) |dx ≤ 1 +
b

a− b
.

It follows that for any partition 0 = x0 < x1 < ... < xN = 1 we have by the FT for the Lebesgue integral

N∑
i=1

|f (xi)− f (xi−1) | =
N∑
i=1

∣∣∣ ∫ xi

xi−1

dtf ′ (t) dt
∣∣∣ ≤ N∑

i=1

∫ xi

xi−1

|f ′ (x) |dx ≤
∫ 1

0

|f ′ (x) |dx ≤ 1 +
b

a− b
.

We now establish that if a ≤ b then f is not of bounded variation. To do this, we construct a sequence
of partitions whose variation is unbounded.

For n ≥ 1 we define xn =
(

2
πn

)1/b
. Note that |f (xn) | =

(
2
πn

)a/b
if n is odd, while f(xn) = 0 if n is even.

For any N ≥ 1 we now consider a partition of [0, 1] by N + 1 intervals of the form

0 < xN < xN−1 < ... < x2 < x1 < 1 .

The variation of this partition is (dropping the left and right outermost interval)

V arf (P) ≥
N−1∑
n=1

|f (xn+1)− f (xn) | ≥
N−1∑
n=1
n odd

(
2

πn

)a/b
+

N−1∑
n=1
n even

(
2

π(n+ 1)

)a/b
Both sums on the right hand side diverge as N → ∞ if a ≤ b, the case a = b being the borderline case
(harmonic series). Hence the total variation of f on [0, 1] is not bounded.

b) Let us fix α ∈ (0, 1) and set b = a, so f(x) = xa sinx−a on (0, 1] and f(0) = 0. We will choose a (α) such
that the α-Lipschitz condition holds. Wlog we fix y > x and set y = x+ h with 0 < h ≤ 1 and x ∈ [0, 1).

We estimate |f (x+ h) − f (x) | ≤ (x + h)a + xa ≤ 2(x + h)a for x ∈ [0, 1) and also |f (x+ h) − f(x)| ≤
|f ′(x̃)|h for some x̃ ∈ (x, x+ h) by the mean value theorem. By part a) we estimate f ′ to obtain
|f (x+ h)− f(x)| ≤ 2a

x h for x ∈ (0, 1].

Now if h ≤ xa+1 then 1
x ≤ h−

1
a+1 then x 6= 0 and the second estimate yields |f (x+ h)− f(x)| ≤ 2a

x h ≤
2ah1− 1

a+1 . Hence if we set α := 1− 1
a+1 = a

a+1 we satisfy the desired Lipschitz condition in this range of

h. If h > xa+1 the first estimate yields the desired Lipschitz condition via (using h ≤ 1 and a > 0)

|f (x+ h)− f (x) | ≤ 2(h
1

a+1 + h)a ≤ 2(h
1

a+1 + h
1

a+1 )a ≤ 2 · 2ahα .
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