Measure and Integration: Example Sheet 7 (Solutions)

Fall 2016 [G. Holzegel]

March 30, 2017

1 Hardy-Littlewood maximal function I

Recall the maximal function is defined by

$$
f^{\star}(x)=\sup _{B \ni x} \frac{1}{m(B)} \int_{B}|f(y)| d y
$$

where we take the sup over all balls containing x. Note that one can take either open or closed balls here. [Indeed, the sup taken over closed balls containing x is clearly bigger or equal than the sup taken over open balls containing x as the closure of any open ball containing x also contains x. Conversely, if the sup taken over closed balls containing x is equal to k, then, given any $\delta>0$ there is a closed ball containing x with $\frac{1}{m(\bar{B})} \int_{\bar{B}}|f(y)| d y \geq k-\delta$ and by the absolute continuity of the integral an open ball B^{\prime} with $\bar{B} \subset B^{\prime}$ with $\frac{1}{m\left(B^{\prime}\right)} \int_{B^{\prime}}|f(y)| d y \geq k-2 \delta$. Since this works for any δ we must have that the sup over the open balls containing x is also greater or equal to k.] For the present question taking the sup over closed balls containing x is more convenient.
a) If f is not zero almost everywhere, we necessarily have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|f(y)| d y \geq \delta \tag{1}
\end{equation*}
$$

for some $\delta>0$ (recall we proved that $\|f\|_{L^{1}}=0$ implies f is zero almost everywhere). In particular, there exists some ball $B=\bar{B}(0, R)$ such that

$$
\int_{B}|f(y)| d y \geq \frac{\delta}{2}
$$

[Indeed, assuming $\int_{B}|f(y)| d y<\frac{\delta}{2}$ for any $B=\bar{B}(0, R)$ we pick $\epsilon=\frac{\delta}{4}$ and a ball $B^{\prime}=\bar{B}\left(0, R^{\prime}\right)$ with $\int_{\mathbb{R}^{d} \backslash B^{\prime}}|f(y)| d y<\frac{\delta}{4}$ (cf. Proposition 3.5 in the notes) which is in contradiction with (1).] Now

- for $1 \leq|x|<R$ we choose the ball $B=B(0, R)$ which contains x to get a lower bound on $f^{\star}(x)$ through $f^{\star}(x) \geq \frac{\delta}{2 k_{d} R^{d}} \geq \frac{\delta}{2 k_{d} R^{d}} \frac{1}{|x|^{d}}$, where $m(B(0, R))=k_{d} R^{d}$. ${ }^{1}$
- for $|x| \geq R$ we choose the ball $\bar{B}(0,|x|) \supset \bar{B}(0, R)$ which contains x to obtain a lower bound on f^{\star}, namely

$$
f^{\star}(x) \geq \frac{\delta}{2 \cdot k_{d}|x|^{d}}
$$

Choosing $c=\min \left(\frac{\delta}{2 k_{d} R^{d}}, \frac{\delta}{2 \cdot k_{d}}\right)$ the desired estimate on the maximal function follows. The non-integrability easily follows in polar coordinates (or using the method carried out in Question 2 below).

[^0]b) By the estimate from part a) we have
$$
\left\{x \mid f^{\star}(x)>\alpha\right\} \supset\left\{x\left|1 \leq|x| \leq \frac{c^{\frac{1}{d}}}{\alpha^{\frac{1}{d}}}\right\}\right.
$$
for $c=\frac{1}{2 k_{d}}$ since the assumption $\int_{B(0,1)}|f|=1$ implies $\delta=1$ and $R=1$ in part a). Hence for $\alpha<2^{-d} c$ we have therefore
$$
m\left(\left\{x \mid f^{\star}(x)>\alpha\right\}\right) \geq k_{d}\left(\frac{c}{\alpha}-1\right) \geq \frac{k_{d} c}{2} \cdot \frac{1}{\alpha}
$$

2 Hardy-Littlewood maximal function II

a) The most straightforward way would be to compute

$$
\int_{\mathbb{R}} f(x) d x=2 \int_{0}^{\frac{1}{2}} f(x) d x=2 \int_{0}^{\frac{1}{2}} \frac{1}{r(\log r)^{2}} d r=2 \int_{0}^{\frac{1}{2}} d r \frac{d}{d r} \frac{-1}{\log r}=\frac{2}{\log 2}
$$

but this requires careful justification of the fundamental theorem of calculus and the limit $r \rightarrow 0$ (which you should provide).
Here is a way to do it from first principles. We define the sets

$$
E_{2^{n}}:=\left\{x \left\lvert\, \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}\right.\right\}
$$

which are disjoint and whose union is $(0,1 / 2]$. We have (by MCT)

$$
\begin{equation*}
\int_{\mathbb{R}} f(x) d x=2 \int_{(0,1 / 2]} f(x) d x=2 \sum_{n=1}^{\infty} \int_{E_{2^{n}}} f(x) d^{d} x \tag{2}
\end{equation*}
$$

Now the integral can be estimated by

$$
\int_{E_{2^{n}}} f(x) \leq m\left(E_{2^{n}}\right) 2^{n+1} \frac{1}{n^{2}(\log 2)^{2}}=\left[\frac{1}{2^{n}}-\frac{1}{2^{n+1}}\right] 2^{n+1} \frac{1}{n^{2}(\log 2)^{2}}=\frac{1}{(\log 2)^{2}} \frac{1}{n^{2}}
$$

and this is summable in n and hence the right hand side of (2) is finite.
b) For $x=0$ the inequality holds trivially. For $0<x \leq \frac{1}{2}$, the interval $I=\left[e^{-\frac{1}{x}}, x\right]$ contains x and satisfies $m(I)<x$. We have by the fundamental theorem of calculus

$$
\int_{e^{-\frac{1}{x}}}^{x} f(x) d x=\int_{e^{-\frac{1}{x}}}^{x} \frac{1}{r(\log r)^{2}} d r=\int_{e^{-\frac{1}{x}}}^{x} d r \frac{d}{d r} \frac{-1}{\log r}=-x-\frac{1}{\log (x)} \geq \frac{1}{\log \frac{1}{x}}\left(1-x \log \left(\frac{1}{x}\right)\right)
$$

and since $x \log \left(\frac{1}{x}\right) \leq \frac{1}{2}$ in $[0,1 / 2]$ we conclude

$$
f^{\star}(x) \geq \frac{1}{x} \int_{e^{-\frac{1}{x}}}^{x} f(x) d x \geq \frac{1}{2 x \log (1 / x)}
$$

Obviously, the same argument works for $-\frac{1}{2} \leq x<0$ thereby proving the desired bound for all $|x|<\frac{1}{2}$. We finally show that f^{\star} is not integrable locally around 0 adapting the idea in a). Using the notation $E_{2^{n}}$ from a) and (2) with f^{\star} replacing f we now establish a lower bound for the integral

$$
\int_{E_{2^{n}}} f^{\star}(x) \geq m\left(E_{2^{n}}\right) 2^{n} \frac{1}{(n+1)(\log 2)}=\left[\frac{1}{2^{n}}-\frac{1}{2^{n+1}}\right] 2^{n} \frac{1}{(n+1)(\log 2)}=\frac{1}{2 \log 2(n+1)}
$$

The sum over n now diverges and hence the function f^{\star} is not integrable over $(0,1 / 2)$.

3 Points of Lebesgue density

a) Choosing the characteristic function χ_{E} for f in the Lebesgue differentiation theorem we obtain the formula

$$
\chi_{E}(x)=\lim _{\substack{(B) \rightarrow 0 \\ x \in B}} \frac{1}{m(B)} \int_{B} \chi_{E}=\lim _{\substack{m(B) \rightarrow 0 \\ x \in B}} \frac{m(B \cap E)}{m(B)}
$$

for almost every x. Thus for almost every $x \in E, x$ is a point of Lebesgue density as the left hand side is 0 . For almost every $x \notin E$ we have

$$
\begin{equation*}
\lim _{\substack{m(B) \rightarrow 0 \\ x \in B}} \frac{m(B \cap E)}{m(B)}=0 \tag{3}
\end{equation*}
$$

so in particular almost every $x \notin E$ is not a point of Lebesgue density.
Remark: Note that almost everywhere is important here. In general, there can be points in E for which $\lim _{\substack{m(B) \rightarrow 0 \\ x \in B}} \frac{m(B \cap E)}{m(B)}$ takes any value between 0 and 1 . The closed unit square for instance has points where this limit is equal to $1 / 2$ and $1 / 4$ (where?) but of course these points form a measure 0 set.
b) By assumption we have for some $\alpha>0$

$$
\frac{m(I \cap E)}{m(I)} \geq \alpha>0
$$

for all intervals I. By part a), in particular (3), we must have

$$
\begin{equation*}
\lim _{\substack{m(I) \rightarrow 0 \\ x \in I}} \frac{m(I \cap E)}{m(I)}=0 \tag{4}
\end{equation*}
$$

for almost all $x \in E^{c}$. If $E \subset[0,1]$ has measure $1-\delta$ for $\delta>0$, then the set $[0,1] \backslash E \subset E^{c}$ has measure $\delta>0$ and hence in view of (4) there are points $x \in E^{c}$ and intervals I such that

$$
\frac{m(I \cap E)}{m(I)}<\frac{\alpha}{2}
$$

Contradiction. [Note that if $[0,1] \backslash E$ had measure 0 we would not be able to conclude that (4) held for any point in $[0,1] \backslash E$ because it only holds up to a measure zero set!]

4 Functions of bounded variation I

To show continuity from the left at $t>a$ with $\epsilon>0$ prescribed, we find a partition $t_{0}=a, \ldots, t_{N}=t$ with

$$
\begin{equation*}
T_{f}(a, t) \geq \sum_{n=1}^{N}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| \geq T_{f}(a, t)-\frac{\epsilon}{2} \tag{5}
\end{equation*}
$$

Refining this partition if necessary we can assume - using the continuity of f - that t_{N-1} is sufficiently close to t such that $|f(s)-f(t)|<\frac{\epsilon}{2}$ holds for all $s \in\left(t_{N-1}, t\right)$. Now for any such s, the refined partition $t_{0}, \ldots, t_{N-1}, s, t_{N}=t$ still satisfies (5) and hence for such s

$$
T_{f}(a, s) \geq \sum_{n=1}^{N-1}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+\left|f(s)-f\left(t_{N-1}\right)\right| \geq T_{f}(a, t)-\epsilon
$$

where we add and subtract $|f(t)-f(s)|$ to verify the last inequality. This show continuity from the left as we have $0 \leq T_{f}(a, t)-T_{f}(a, s) \leq \epsilon$ for all $s \in\left(t_{N-1}, t\right)$ with $t_{N-1}<t$ depending on $\epsilon>0$.

To show continuity at t from the right we choose a partition $t_{0}=t, t_{1} \ldots, t_{N}=b$ such that

$$
\begin{equation*}
T_{f}(t, b) \geq \sum_{n=1}^{N}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| \geq T_{f}(t, b)-\frac{\epsilon}{2} \tag{6}
\end{equation*}
$$

By refining the partition if necessary we can assume - using the continuity of f - that the first interval of the partition $\left(t_{0}=t, t_{1}\right)$ is sufficiently small so that $|f(t)-f(s)|<\frac{\epsilon}{2}$ holds for all $s \in\left(t, t_{1}\right)$. This fixes t_{1} (depending on ϵ). The refined partition $t_{0}=t, s, t_{1}, \ldots, t_{N}$ still satisfies (6) and hence

$$
T_{f}(t, b)-\frac{\epsilon}{2} \leq|f(t)-f(s)|+\left|f(s)-f\left(t_{1}\right)\right|+\sum_{n=2}^{N-1}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| \leq T_{f}(s, b)+\frac{\epsilon}{2}
$$

holds for any $s \in\left(t, t_{1}\right)$. The triangle inequalities implies $T_{f}(t, s) \leq \epsilon$ for all such s and another application of the triangle inequality yields

$$
0 \leq T_{f}(a, s)-T_{f}(a, t) \leq T(t, s) \leq \epsilon \quad \text { for all } s \in\left(t, t_{1}\right)
$$

5 Functions of bounded variation II

a) We first establish that if $a>b$, then f is of BV. We have

$$
f^{\prime}(x)=a x^{a-1} \sin \left(x^{-b}\right)-b x^{a-b-1} \cos \left(x^{-b}\right)
$$

for $x \in(0,1)$ and f^{\prime} is also integrable in $[0,1]$ in view of

$$
\left|f^{\prime}(x)\right| \leq a \cdot x^{a-1}+b \cdot x^{a-b-1} \quad \text { and hence } \quad \int_{0}^{1} d x\left|f^{\prime}(x)\right| d x \leq 1+\frac{b}{a-b}
$$

It follows that for any partition $0=x_{0}<x_{1}<\ldots<x_{N}=1$ we have by the FT for the Lebesgue integral

$$
\sum_{i=1}^{N}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|=\sum_{i=1}^{N}\left|\int_{x_{i-1}}^{x_{i}} d t f^{\prime}(t) d t\right| \leq \sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}}\left|f^{\prime}(x)\right| d x \leq \int_{0}^{1}\left|f^{\prime}(x)\right| d x \leq 1+\frac{b}{a-b}
$$

We now establish that if $a \leq b$ then f is not of bounded variation. To do this, we construct a sequence of partitions whose variation is unbounded.
For $n \geq 1$ we define $x_{n}=\left(\frac{2}{\pi n}\right)^{1 / b}$. Note that $\left|f\left(x_{n}\right)\right|=\left(\frac{2}{\pi n}\right)^{a / b}$ if n is odd, while $f\left(x_{n}\right)=0$ if n is even. For any $N \geq 1$ we now consider a partition of $[0,1]$ by $N+1$ intervals of the form

$$
0<x_{N}<x_{N-1}<\ldots<x_{2}<x_{1}<1
$$

The variation of this partition is (dropping the left and right outermost interval)

$$
\operatorname{Var}_{f}(\mathcal{P}) \geq \sum_{n=1}^{N-1}\left|f\left(x_{n+1}\right)-f\left(x_{n}\right)\right| \geq \sum_{\substack{n=1 \\ n \text { odd }}}^{N-1}\left(\frac{2}{\pi n}\right)^{a / b}+\sum_{\substack{n=1 \\ n \text { even }}}^{N-1}\left(\frac{2}{\pi(n+1)}\right)^{a / b}
$$

Both sums on the right hand side diverge as $N \rightarrow \infty$ if $a \leq b$, the case $a=b$ being the borderline case (harmonic series). Hence the total variation of f on $[0,1]$ is not bounded.
b) Let us fix $\alpha \in(0,1)$ and set $b=a$, so $f(x)=x^{a} \sin x^{-a}$ on $(0,1]$ and $f(0)=0$. We will choose $a(\alpha)$ such that the α-Lipschitz condition holds. Wlog we fix $y>x$ and set $y=x+h$ with $0<h \leq 1$ and $x \in[0,1)$. We estimate $|f(x+h)-f(x)| \leq(x+h)^{a}+x^{a} \leq 2(x+h)^{a}$ for $x \in[0,1)$ and also $|f(x+h)-f(x)| \leq$ $\left|f^{\prime}(\tilde{x})\right| h$ for some $\tilde{x} \in(x, x+h)$ by the mean value theorem. By part a) we estimate f^{\prime} to obtain $|f(x+h)-f(x)| \leq \frac{2 a}{x} h$ for $x \in(0,1]$.
Now if $h \leq x^{a+1}$ then $\frac{1}{x} \leq h^{-\frac{1}{a+1}}$ then $x \neq 0$ and the second estimate yields $|f(x+h)-f(x)| \leq \frac{2 a}{x} h \leq$ $2 a h^{1-\frac{1}{a+1}}$. Hence if we set $\alpha:=1-\frac{1}{a+1}=\frac{a}{a+1}$ we satisfy the desired Lipschitz condition in this range of h. If $h>x^{a+1}$ the first estimate yields the desired Lipschitz condition via (using $h \leq 1$ and $a>0$)

$$
|f(x+h)-f(x)| \leq 2\left(h^{\frac{1}{a+1}}+h\right)^{a} \leq 2\left(h^{\frac{1}{a+1}}+h^{\frac{1}{a+1}}\right)^{a} \leq 2 \cdot 2^{a} h^{\alpha}
$$

[^0]: ${ }^{1}$ We did not compute the constant $k_{d}=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}$ explicitly in class but $m(B(0, R)) \sim R^{d}$ follows directly from the scaling property of the Lebesgue measure (which we did prove) and the fact that the unit ball has finite measure.

