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1 Hardy-Littlewood maximal function I

Recall the maximal function is defined by
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where we take the sup over all balls containing x. Note that one can take either open or closed balls here.
[Indeed, the sup taken over closed balls containing x is clearly bigger or equal than the sup taken over
open balls containing x as the closure of any open ball containing = also contains x. Conversely, if the sup
taken over closed balls containing x is equal to k, then, given any & > 0 there is a closed ball containing x
with ﬁ fB |f(y)|dy > k — & and by the absolute continuity of the integral an open ball B’ with B C B’

with ﬁ S |f(W)|dy > k — 25. Since this works for any § we must have that the sup over the open

balls containing x is also greater or equal to k.] For the present question taking the sup over closed balls
containing x is more convenient.

a) If f is not zero almost everywhere, we necessarily have

[ rwlay =5 (1)

for some § > 0 (recall we proved that ||f||z: = 0 implies f is zero almost everywhere). In particular,
there exists some ball B = B (0, R) such that
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[Indeed, assuming [, |f(y)|dy < § for any B = B (0, R) we pick ¢ = $ and a ball B’ = B (0, R’) with
fRd\B' |£(y)|dy < & (cf. Proposition 3.5 in the notes) which is in contradiction with (1).] Now

N

e for 1 < |z| < R we choose the ball B = B(0, R) which contains z to get a lower bound on f*(z)
through f*(x) > %;% > de%ﬁ, where m (B (0, R)) = kgR%.!
e for |z| > R we choose the ball B (0,|z|) D B (0, R) which contains z to obtain a lower bound on f*,
namely
)
* > —.

Choosing ¢ = min (de%, ﬁ) the desired estimate on the maximal function follows. The non-integrability

easily follows in polar coordinates (or using the method carried out in Question 2 below).

n

1We did not compute the constant kg = F(Ziil) explicitly in class but m (B(0, R)) ~ R? follows directly from the scaling
2

property of the Lebesgue measure (which we did prove) and the fact that the unit ball has finite measure.



b)

By the estimate from part a) we have
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for ¢ = i since the assumption fB(0,1) |f| =1 implies 6 = 1 and R = 1 in part a). Hence for a < 27 %

we have therefore , )
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Hardy-Littlewood maximal function II

The most straightforward way would be to compute
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but this requires careful justification of the fundamental theorem of calculus and the limit » — 0 (which
you should provide).

Here is a way to do it from first principles. We define the sets

1 1
Eon = {x \ GRS <CE§27}

which are disjoint and whose union is (0,1/2]. We have (by MCT)
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Now the integral can be estimated by
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and this is summable in n and hence the right hand side of (2) is finite.

For z = 0 the inequality holds trivially. For 0 < x < %, the interval I = [e*% , x] contains z and satisfies

m (I) < z. We have by the fundamental theorem of calculus
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and since zlog (1) < 1 in [0,1/2] we conclude
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Obviously, the same argument works for —% < z < 0 thereby proving the desired bound for all |z| < %

We finally show that f* is not integrable locally around 0 adapting the idea in a). Using the notation
Es» from a) and (2) with f* replacing f we now establish a lower bound for the integral
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The sum over n now diverges and hence the function f* is not integrable over (0,1/2).



3 Points of Lebesgue density

a) Choosing the characteristic function xg for f in the Lebesgue differentiation theorem we obtain the

formula
(z) = lim b / = lim 202 (BN E)
XE\E) = mB)—»om (B) Jg XE = m(B)—»0 m (B)
zeB x€EB

for almost every x. Thus for almost every = € E, z is a point of Lebesgue density as the left hand side
is 0. For almost every « ¢ E we have
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so in particular almost every ¢ E' is not a point of Lebesgue density.

Remark: Note that almost everywhere is important here. In general, there can be points in E for which

lim,,(B)—0 mffgg;ﬂ) takes any value between 0 and 1. The closed unit square for instance has points where
B

Te
this limit is equal to 1/2 and 1/4 (where?) but of course these points form a measure 0 set.
b) By assumption we have for some a > 0
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for all intervals I. By part a), in particular (3), we must have
m(INE)
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for almost all x € E°. If E C [0,1] has measure 1 — ¢ for § > 0, then the set [0,1] \ E C E° has measure
0 > 0 and hence in view of (4) there are points x € E° and intervals I such that

m(INE) < Q

m () 27

Contradiction. [Note that if [0,1] \ F had measure 0 we would not be able to conclude that (4) held for
any point in [0, 1] \ E because it only holds up to a measure zero set!]

4 Functions of bounded variation 1

To show continuity from the left at ¢ > a with € > 0 prescribed, we find a partition ty = a,...,ty =t with
a €
Ty at) 2 D7 1f(0) = f(ti)| 2 Ty (01) — 5. (5)
n=1

Refining this partition if necessary we can assume — using the continuity of f — that ty_; is sufficiently
close to ¢ such that |f(s) — f(t)| < § holds for all s € (ty—1,t). Now for any such s, the refined partition
to,...,tN—1,8,tn =t still satisfies (5) and hence for such s

N-1
Ty (as) = S 1f(t) = f(tioa)| + 1£() = Fltw-1)| = Ty(at) e,
n=1

where we add and subtract |f(t) — f(s)| to verify the last inequality. This show continuity from the left as
we have 0 < T¢(a,t) — T¢(a,s) < e for all s € (tx_1,t) with txy_1 <t depending on € > 0.



To show continuity at ¢ from the right we choose a partition to = ¢,t1...,ty = b such that

Zlf ti-i)l 2 Ty (8,0) — 5 (6)

By refining the partition if necessary we can assume — using the continuity of f — that the first interval of
the partition (to = ¢,t;) is sufficiently small so that |f(t) — f(s)| < § holds for all s € (¢,1). This fixes t;
(depending on €). The refined partition tg = ¢, s,t1, ..., t ;v still satisfies (6) and hence

Ty(t,b) = 5 < [F() = F()| + |£(s) = F ()| + Z [F(t) = f(tima)] < Tr(s,b) +

holds for any s € (t,t1). The triangle inequalities implies T (¢, s) < e for all such s and another application
of the triangle inequality yields

0<Tr(a,s) —Tyla,t) <T(ts)<e forallse(tt).

5 Functions of bounded variation II

a) We first establish that if a > b, then f is of BV. We have
f(x) = az* 'sin (z7°) — bz """ cos (z77)

for z € (0,1) and f’ is also integrable in [0, 1] in view of
1
b
If'(z)] <a-z* ' 4+b-227"! and hence / dz|f' (z)|dz <1+ P
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It follows that for any partition 0 = x¢g < 1 < ... < zxy = 1 we have by the FT for the Lebesgue integral
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We now establish that if @ < b then f is not of bounded variation. To do this, we construct a sequence
of partitions whose variation is unbounded.

For n > 1 we define x,, = (%)Ub. Note that |f (z,,)| = (%)a/b if n is odd, while f(z,) = 0 if n is even.

For any N > 1 we now consider a partition of [0,1] by N 4 1 intervals of the form
O<zy <zny_1<...<z2<21 <1.

The variation of this partition is (dropping the left and right outermost interval)

= N-1 a/b  N-1 a/b
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n=1 n=1
n odd n even

Both sums on the right hand side diverge as N — oo if a < b, the case a = b being the borderline case
(harmonic series). Hence the total variation of f on [0, 1] is not bounded.

b) Let us fix a € (0,1) and set b = a, so f(x) = z*sinz~® on (0,1] and f(0) = 0. We will choose a (a) such
that the a-Lipschitz condition holds. Wlog we fix y > x and set y =z +h with 0 < h <1 and z € [0, 1).
We estimate |f (x +h) — f(x)]| < (x+ h)*+2* < 2(x 4+ h)* for z € [0,1) and also |f (z+ h) — f(z)] <
|f'(Z)|h for some & € (z,z+ h) by the mean value theorem. By part a) we estimate f’ to obtain
|f (x4 h) — f(z)| < 22h for z € (0,1].

Now if h < 29! then 1 < h~ T then x # 0 and the second estimate yields |f (+h)— f(z)] < 22h <
2ah'~ @ . Hence if we set o := 1 — —— = we satisfy the desired Lipschitz condition in this range of

a+1 a+1
h. If h > xa“ the first estimate yields the desired Lipschitz condition via (using A < 1 and a > 0)

If (m+h) — f(2)] < 2(haT +h)* < 2(haT + ha1)* < 2.2°R°



