Measure and Integration: Example Sheet 6

Fall 2016 [G. Holzegel]

March 30, 2017

1 Modes of convergence

There are several ways in which a sequence of real valued measurable functions $\left(f_{n}\right)$ can converge to a limiting function f : For instance, pointwise, pointwise a.e. or uniformly. In lectures, we also introduced the L^{1}-norm and hence the notion of $f_{n} \rightarrow f$ in L^{1}.
a) Discuss the convergence of the following sequences of functions with regard to the aforementioned notions:
(a) $f_{n}=\frac{1}{n} \chi_{(0, n)}$
(b) $f_{n}=\chi_{(n, n+1)}$
(c) $f_{n}=n \cdot \chi_{[0,1 / n]}$
b) Give an example of a sequence $\left(f_{n}\right)$ which converges to f in L^{1} but not pointwise a.e.

HINT: Construct a sequence of indicator functions travelling over and over through the interval $[0,1]$ with decreasing length.
c) There is a further notion of convergence, which plays an important role in probability: We say that $\left(f_{n}\right)$ is Cauchy in measure if for every $\epsilon>0$ we have

$$
m\left(\left\{x\left|\left|f_{k}(x)-f_{n}(x)\right| \geq \epsilon\right\}\right) \rightarrow 0 \quad \text { as } k, n \rightarrow \infty .\right.
$$

We say that $\left(f_{n}\right)$ converges to f in measure if for every $\epsilon>0$ we have

$$
m\left(\left\{x\left|\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty\right.
$$

Prove that if $f_{n} \rightarrow f$ in L^{1}, then $f_{n} \rightarrow f$ in measure. Revisit a) to see that the converse does not hold.

2 Applications of Fubini's Theorem

Establish the formula

$$
\int_{0}^{\infty} e^{-s x} \frac{1}{x} \sin ^{2} x d x=\frac{1}{4} \log \left(1+\frac{4}{s^{2}}\right)
$$

for $s>0$ by integrating $e^{-s x} \sin (2 x y)$ with respect to x and y.

3 Application of the Dominated Convergence Theorem

Suppose $I \subset \mathbb{R}$ is open and that $f: I \times E \rightarrow \mathbb{R},(t, x) \mapsto f(t, x)$ for E a measurable subset of \mathbb{R}^{d}. Suppose f is in $L^{1}(E)$ for all t, differentiable in t for all x with the derivative satisfying $\left|\partial_{t} f(t, x)\right| \leq g(x)$ for some $g \in L^{1}(E)$. Then

$$
\frac{d}{d t} \int_{E} f(t, x) d x=\int_{E} \frac{\partial f}{\partial t}(t, x) d x<\infty .
$$

4 The Gamma function

Prove the formula for the Gamma function from the last sheet

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

by differentiating the formula $\int_{0}^{\infty} e^{-t x} d x=t^{-1}$.

5 Another application of Fubini

Let f be a measurable, finite-valued function on $[0,1]$ and suppose that $|f(x)-f(y)|$ is integrable on the unit square $[0,1] \times[0,1]$. Show that f is integrable on $[0,1]$.

