Imperial College London

George JACKSON BSc DPhil FRSC FRS

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Chemical Physics
 
 
 
//

Contact

 

+44 (0)20 7594 5640g.jackson Website

 
 
//

Location

 

RODH 605Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

331 results found

Cummings PT, Hall CK, Jackson G, Palmer JCet al., 2021, Keith E. Gubbins: A retrospective, AICHE JOURNAL, Vol: 67, ISSN: 0001-1541

Journal article

Lee YS, Galindo A, Jackson G, Adjiman CSet al., 2021, An approach for simultaneous computer-aided solvent design and process design for CO<inf>2</inf> chemical absorption processes, Computer Aided Chemical Engineering, Pages: 167-172

In the field of Computer-Aided Molecular and Process Design (CAMPD), a variety of solution methods have been developed to handle the complexities associated with the non-convexity and non-linearity of molecular structure-property and process models. However, mostalgorithms are prone to failing to generate feasible solutions when the integrated solvent-process model renders a significant portion of the search space infeasible. In this work, we propose a solution approach for the integrated design of an optimal chemical absorption process in which tailored feasibility tests are incorporated into a process optimisation problem. The solution approach allows the exploration of a design space without unnecessary difficulties by recognising infeasibilities. The effectiveness of the approach is demonstrated on an aqueous amine solvent-based CO2 capture process.

Book chapter

Haslam AJ, Gonzalez-Perez A, Di Lecce S, Khalit SH, Perdomo FA, Kournopoulos S, Kohns M, Lindeboom T, Wehbe M, Febra S, Jackson G, Adjiman CS, Galindo Aet al., 2020, Expanding the Applications of the SAFT-gamma Mie Group-Contribution Equation of State: Prediction of Thermodynamic Properties and Phase Behavior of Mixtures, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 65, Pages: 5862-5890, ISSN: 0021-9568

Journal article

Morgado P, Barras J, Galindo A, Jackson G, Filipe EJMet al., 2020, Modeling the Fluid-Phase Equilibria of Semifluorinated Alkanes and Mixtures of (<i>n</i>-Alkanes plus <i>n</i>-Perfluoroalkanes) with the SAFT-γ Mie Group-Contribution Approach, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 65, Pages: 5909-5919, ISSN: 0021-9568

Journal article

Jackson G, 2020, OBITUARY Ian R. McDonald (1938-2020), Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, Vol: 118, Pages: 1-2, ISSN: 0026-8976

Journal article

Kohns M, Lazarou G, Forte E, Perdomo Hurtado F, Kournopoulos S, Jackson G, Adjiman C, Galindo Aet al., 2020, Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulfuric and carbonic acid, Physical Chemistry Chemical Physics, Vol: 22, Pages: 15248-15269, ISSN: 1463-9076

The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to the ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724–2749] to study aqueous solutions of nitric, sulphuric and carbonic acid, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. Here we present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature.

Journal article

Bernet T, Mueller EA, Jackson G, 2020, A tensorial fundamental measure density functional theory for the description of adsorption in substrates of arbitrary three-dimensional geometry, JOURNAL OF CHEMICAL PHYSICS, Vol: 152, ISSN: 0021-9606

Journal article

Blas FJ, Galindo A, Jackson G, 2020, Thermodynamics 2019 Conference-Punta Umbria, Costa de la Luz, Huelva, Spain, 26-28 June 2019, MOLECULAR PHYSICS, Vol: 118, ISSN: 0026-8976

Journal article

Morgado P, Colaco B, Santos V, Jackson G, Filipe EJMet al., 2020, Modelling the thermodynamic properties and fluid-phase equilibria of<i>n</i>-perfluoroalkanes and their binary mixtures with the SAFT-<i>γ</i>Mie group contribution equation of state, MOLECULAR PHYSICS, Vol: 118, ISSN: 0026-8976

Journal article

Di Lecce S, Lazarou G, Khalit SH, Pugh D, Adjiman CS, Jackson G, Galindo A, McQueen Let al., 2020, Correction: Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie, RSC Advances: an international journal to further the chemical sciences, Vol: 10, Pages: 19463-19465, ISSN: 2046-2069

Correction for ‘Modelling and prediction of the thermophysical properties of aqueous mixtures of choline geranate and geranic acid (CAGE) using SAFT-γ Mie’ by Silvia Di Lecce et al., RSC Adv., 2019, 9, 38017–38031. DOI: 10.1039/C9RA07057E

Journal article

Lee L, Graham E, Galindo A, Jackson G, Adjiman Cet al., 2020, A comparative study of multi-objective optimization methodologies for molecular and process design, Computers and Chemical Engineering, Vol: 136, ISSN: 0098-1354

The need to consider multiple objectives in molecular design, whether based on techno-economic, environmental or health and safety metrics is increasingly recognized. There is, however, limited understanding of the suitability of different multi-objective optimization algorithm for the solution of such design problems. In this work, we present a systematic comparison of the performance of five mixed-integer non-linear programming (MINLP) multi-objective optimization algorithms on the selection of computer-aided molecular design (CAMD) and computer-aided molecular and process design (CAMPD) problems. The five methods are designed to address the discrete and nonlinear nature of the problem, with the aim of generating an accurate approximation of the Pareto front. They include: a weighted sum approach without global search phases (SWS), a weighted sum approach with simulated annealing (SA), a weighted sum approach with multi level single linkage (MLSL), the sandwich algorithm with MLSL and the non dominated sorting genetic algorithm-II (NSGA-II). The algorithms are compared systematically in two steps. The effectiveness of the global search methods is evaluated with SWS, WSSA and WSML. WSML is found to be most effective and a comparative analysis of WSML, SDML and NSGA-II is then undertaken. As a test set of these optimization techniques, two of CAMD and one CAMPD problems of varying dimensionality are formulated as case studies. The results show that the sandwich algorithm with MLSL provides the most efficient generation of a diverse set of Pareto points, leading to the construction of an approximate Pareto front close to exact Pareto front.

Journal article

Papadopoulos A, Shavalieva G, Papadokonstantakis S, Seferlis P, Perdomo FA, Galindo A, Jackson G, Adjiman CSet al., 2020, An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents, COMPUTERS & CHEMICAL ENGINEERING, Vol: 135, ISSN: 0098-1354

Journal article

Bowskill DHH, Tropp UE, Gopinath S, Jackson G, Galindo A, Adjiman CSSet al., 2020, Beyond a heuristic analysis: integration of process and working-fluid design for organic Rankine cycles, MOLECULAR SYSTEMS DESIGN & ENGINEERING, Vol: 5, Pages: 493-510, ISSN: 2058-9689

Journal article

Wehbe M, Haslam A, Adjiman CS, Jackson G, Galindo Aet al., 2020, Predicting optimal salt forms for active pharmaceutical ingredients using the SAFT-y mie equation of state

Conference paper

Jonuzaj S, Watson OL, Ottoboni S, Price CJ, Sefcik J, Galindo A, Jackson G, Adjiman CSet al., 2020, Computer-aided Solvent Mixture Design for the Crystallisation and Isolation of Mefenamic Acid, Editors: Pierucci, Manenti, Bozzano, Manca, Publisher: ELSEVIER SCIENCE BV, Pages: 649-654

Book chapter

Ravipati S, Galindo A, Jackson G, Haslam AJet al., 2019, An investigation of free-energy-averaged (coarse-grained) potentials for fluid adsorption on heterogeneous solid surfaces, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, Vol: 21, Pages: 25558-25568, ISSN: 1463-9076

Journal article

Hall CK, Kofke DA, Galindo A, Gil-Villegas A, Striolo A, Jackson Get al., 2019, Peter Cummings - a pillar in the field of statistical mechanics and molecular simulation FOREWORD, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, Vol: 117, Pages: 3479-3483, ISSN: 0026-8976

Journal article

Di Lecce S, Galindo A, Khalit SH, Adjiman C, Jackson G, Lazarou G, McQueen Let al., 2019, Modelling and prediction of the thermophysical properties of aqueous mixtures of Choline Geranate and Geranic acid (CAGE) using SAFT-g Mie, RSC Advances: an international journal to further the chemical sciences, Vol: 9, Pages: 38017-38031, ISSN: 2046-2069

Deep eutectic solvents and room temperature ionic liquids are increasingly recognised as appro-priate materials for use as active pharmaceutical ingredients and formulation additives. Aque-ous mixtures of choline and geranate (CAGE), in particular, have been shown to offer promisingbiomedical properties but the understanding of the thermophysical behaviour of these mixturesremains limited. Here, we develop interaction potentials for use in the SAFT–γgroup–contributionapproach, to study the thermodynamic properties and phase behaviour of aqueous mixtures ofcholine geranate and geranic acid. The determination of the interaction parameters betweenchemical functional groups is carried out in a successive fashion, characterising each group basedon those previously developed. The parameters of the groups relevant to geranic acid are esti-mated using experimental phase–equilibrium data such as vapour pressure and saturated–liquiddensity of simple pure components (n–alkenes, branched alkenes and carboxylic acids) and thephase equilibrium data of mixtures (aqueous solutions of branched alkenes and of carboxylicacids). Geranate is represented by further incorporating the anionic carboxylate group, COO−,which is characterised using aqueous solution data of sodium carboxylate salts, assuming fulldissociation of the salt in water. Choline is described by incorporating the cationic quaternaryammonium group, N+, using data on choline choride solutions. The osmotic pressure of aque-ous mixtures of CAGE at several concentrations is predicted and compared to experimental dataobtained as part of our work to assess the accuracy of the modelling platform. The SAFT–γMieapproach is shown to be predictive, providing a good description of the measured data for a widerange of mixtures and properties. Furthermore, the new group interaction parameters neededto represent CAGE extend the set of functional group

Journal article

Bowron DT, Fernandez-Alonso F, Jackson G, 2019, A tribute to Alan Soper - foreword by the editors FOREWORD, MOLECULAR PHYSICS, Vol: 117, Pages: 3195-3196, ISSN: 0026-8976

Journal article

Febra SA, Aasen A, Adjiman CS, Jackson G, Galindo Aet al., 2019, Intramolecular bonding in a statistical associating fluid theory of ring aggregates, MOLECULAR PHYSICS, ISSN: 0026-8976

Journal article

Campos-Villalobos G, Ravipati S, Haslam AJ, Jackson G, Suaste J, Gil-Villegas Aet al., 2019, Modelling adsorption using an augmented two-dimensional statistical associating fluid theory: 2D-SAFT-VR Mie, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, Vol: 117, Pages: 3770-3782, ISSN: 0026-8976

We present an extension of the SAFT-VR Mie approach to model adsorption of molecular fluids based on a two-dimensional (2D) approximation to describe the adsorbed fluid. Analytical results are provided for the first- and second-order perturbation terms of the free energy for the 2D system. The adsorption model is based on the assumption that the particle pair interactions in the adsorbed and bulk phases are described with the same Mie potential exponents λa and λr, in contrast with the square-well version of the 2D-SAFT-VR approach in which it is considered necessary to modify the attractive ranges of the SW interactions. This important difference between the two approaches leads to a reduction in the number of molecular parameters to be determined. In order to demonstrate the performance of the 2D-SAFT-VR Mie approach, we present results for the the modelling of carbon dioxide (CO2) and methane (CH4) adsorbed onto dry coal.

Journal article

Skutnik RA, Lehmann L, Puschel-Schlotthauer S, Jackson G, Schoen Met al., 2019, The formation of biaxial nematic phases in binary mixtures ofthermotropic liquid-crystals composed of uniaxial molecules, Molecular Physics, Vol: 117, Pages: 2830-2845, ISSN: 0026-8976

Monte Carlo simulations in the isothermal-isobaric ensemble are used to investigate the formation of an ordered, biaxial nematic phase in a binary mixture of thermotropic liquid crystals. The orientational dependence of the interaction between molecules of each pure component is the same as in the well-known Maier-Saupe model; each pure component of the mixture is therefore capable of forming a uniaxial nematic phase. For the interaction between molecules of different components, we use the same Maier-Saupe model but change the sign of the coupling constant. As a consequence a T-shaped arrangement of these molecules is energetically favoured. The formation of the biaxial phase occurs in two steps. At higher temperatures T, one of the components forms a uniaxial nematic phase whereas the other is in a quasi two-dimensional restricted isotropic liquid state. We develop a simple theoretical model to understand the high degree of (ostensible) nematic order in the latter. At lower T, the second component becomes nematic and then the entire mixture of the two compounds has biaxial symmetry. The biaxial nematic phase does not demix into domains rich in molecules of one or the other species.

Journal article

Jiménez-Serratos G, Totton TS, Jackson G, Muller EAet al., 2019, Aggregation behavior of model asphaltenes revealed from large-scale coarse-grained molecular simulations, Journal of Physical Chemistry B, Vol: 123, Pages: 2380-2396, ISSN: 1520-5207

Fully atomistic simulations of models of asphaltenes in simple solvents have allowed the study of trends in aggregation phenomena and the understanding of the role that molecular structure plays therein. However, the detail included at this scale of molecular modeling is at odds with the required spatial and temporal resolution needed to fully understand the asphaltene aggregation. The computational cost required to explore the relevant scales can be reduced by employing coarse-grained (CG) models, which consist of lumping a few atoms into a single segment that is characterised by effective interac- tions. In this work CG force fields developed via the SAFT-γ [Müller, E.A., Jackson, G. (2014) Annu. Rev. Chem. Biomolec. Eng., 5, 405–427] equation of state (EoS) provide a reliable pathway to link the molecular description with macroscopic thermophysical data. A recent modification of the SAFT-VR EoS [Müller, E.A. and Mejía, A. (2017) Langmuir, 33, 11518–11529], that allows parametrizing homonuclear rings, is selected as the starting point to propose CG models for polycyclic aromatic hydrocarbons (PAHs). The new aromatic-core parameters, along with others published for simpler organic molecules, are adopted for the construction of asphaltene models by combining different chemical moieties in a group-contribution fashion. We apply the procedure to two previously reported asphaltene models and perform Molecular Dynamics simulations to validate the coarse-grained representation against benchmark systems of 27 asphaltenes in pure solvent (toluene or heptane) described in a fully atomistic fashion. An excellent match between both levels of description is observed for cluster size, radii of gyration, and relative-shape-anisotropy-factor distributions. We exploit the advantages of the CG representation by simulating systems containing up to 2000 asphaltene molecules in explicit solvent investigating the effect of asphaltene concentration, so

Journal article

Brumby P, Wensink R, Kournopoulos S, Haslam A, Jackson Get al., 2019, Simulation of the surface tension of a nematic liquid crystal in contact with a planar solid

Conference paper

Wehbe M, Adjiman C, Jackson G, Galindo Aet al., 2019, Prediction of the solubility of active pharmaceutical ingredients under varying conditions of ph and temperature using the saft-? mie equation of state

Conference paper

Lee YS, Graham E, Jackson G, Galindo A, Adjiman CSet al., 2019, A comparison of the performance of multi-objective optimization methodologies for solvent design, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 37-42, ISBN: 978-0-12-819939-8

Book chapter

Kazepidis P, Papadopoulos AI, Seferlis P, Perdomo FA, Galindo A, Jackson G, Adjiman CSet al., 2019, Optimal design of post combustion CO<sub>2</sub> capture processes based on phase-change solvents, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 463-468, ISBN: 978-0-12-819939-8

Book chapter

Watson OL, Galindo A, Jackson G, Adjiman CSet al., 2019, Computer-aided Design of Solvent Blends for the Cooling and Anti-solvent Crystallisation of Ibuprofen, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 949-954, ISBN: 978-0-12-819939-8

Book chapter

Evans R, Galindo A, Jackson G, Lynden-Bell R, Rotenberg Bet al., 2018, Daan Frenkel - An entropic career, Molecular Physics, Vol: 116, Pages: 2737-2741, ISSN: 0026-8976

Journal article

Galindo A, Rahman S, Lobanova O, Jimenez-Serratos G, Braga C, Raptis V, Muller E, Jackson G, Avendano Cet al., 2018, SAFT‑γ force field for the simulation of molecular fluids. 5. Hetero Group coarse-grained models of linear alkanes and the importance of intramolecular interactions, Journal of Physical Chemistry B, Vol: 122, Pages: 9161-9177, ISSN: 1520-5207

The SAFT-γ Mie group-contribution equation of state [Papaioannou J. Chem. Phys. 2014, 140, 054107] is used to develop a transferable coarse-grained (CG) force-field suitable for the molecular simulation of linear alkanes. A heterogroup model is fashioned at the resolution of three carbon atoms per bead in which different Mie (generalized Lennard-Jones) interactions are used to characterize the terminal (CH3–CH2–CH2−) and middle (−CH2–CH2–CH2−) beads. The force field is developed by combining the SAFT-γ CG top-down approach [Avendaño J. Phys. Chem. B 2011, 115, 11154], using experimental phase-equilibrium data for n-alkanes ranging from n-nonane to n-pentadecane to parametrize the intermolecular (nonbonded) bead–bead interactions, with a bottom-up approach relying on simulations based on the higher resolution TraPPE united-atom (UA) model [Martin; , Siepmann J. Phys. Chem. B 1998, 102, 2569] to establish the intramolecular (bonded) interactions. The transferability of the SAFT-γ CG model is assessed from a detailed examination of the properties of linear alkanes ranging from n-hexane (n-C6H14) to n-octadecane (n-C18H38), including an additional evaluation of the reliability of the description for longer chains such as n-hexacontane (n-C60H122) and a prototypical linear polyethylene of moderate molecular weight (n-C900H1802). A variety of structural, thermodynamic, and transport properties are examined, including the pair distribution functions, vapor–liquid equilibria, interfacial tension, viscosity, and diffusivity. Particular focus is placed on the impact of incorporating intramolecular interactions on the accuracy, transferability, and representability of the CG model. The novel SAFT-γ CG force field is shown to provide a reliable description of the thermophysical properties of the n-alkanes, in most cases at a level comparable to the that obtained with higher resolution models.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00170163&person=true&page=2&respub-action=search.html