Summary
Biography
Date | Role |
---|---|
2001- | Professor of Electrochemical Engineering, Department of Chemical Engineering, Imperial College London. |
2000-2001 | Professor of Electrochemical Engineering, T.H. Huxley School, Imperial College London |
1998-2000 | NSERC Industrial Research Chair in Electrometallurgy, University of British Columbia, Vancouver, Canada. |
1994-1998 | Professor of Electrochemical Engineering, Department of Earth Resources Engineering, Imperial College London |
1979-1994 | Lecturer, then Reader in Electrochemical Engineering, Department of Earth Resources Engineering, Imperial College London. |
1974-1978 | Research Officer, Electricity Council Research Centre, Capenhurst, Chester. |
1972-1974 | Ph.D. in Electrochemical Engineering, University of Southampton, (Thesis: Fluidised Bed Electrodes) |
1971-1972 | M.Sc. Corrosion, Department of Chemical Engineering, University of Manchester |
1968-1971 | B.Sc. Chemistry, University of Manchester |
Research Interests
My research involves the conception, design, characterisation, modelling, and optimisation of electrochemical processes, consuming electrical energy to effect useful chemical change. Such processes are used for industrial production of Cl2 + NaOH, NaClO3, NaClO4, Al, Co, Cu, Mg, Mn, Na, Ni, Zn, adiponitrile, etc. Chlor-alkali electrolyses alone consume ca. 2 % of the total US electrical power output and one plant at Runcorn consumes ca. 1 % of UK electrical power. Hence, the energy efficiencies of such processes are economically and environmentally crucial, since energy costs dominate their overall running costs, and, though they are intrinsically clean in themselves, they cause pollution (CO2, SO2, NOx) at a distance if energised by power stations burning fossil fuels. Recently completed and present projects involve(d):
- Modelling of spatial distributions of electric potentials, current densities / local reaction rates and concentrations in electrochemical reactors, for industrially relevant conditions.
- Modelling of electrode kinetics, current efficiencies (i.e. the proportion of total current used in the required reaction) and specific electrical energy consumptions for electrochemical processes involving multiple electrode reactions. This enables improved understanding, possibly resulting in improved performance, of existing industrial processes, and in the longer term, could lead to improved reactor designs.
- Conception, design, characterisation, modelling, and optimisation of novel processes for treatment of effluents and wastes (electronic scrap, catalysts etc.) containing a range of precious and base metals.
- Measurements of the spatial distributions of bubbles in electrochemical reactors and of the coalescence kinetics of individual bubbles with planar electrolyte / gas interfaces. Most of the most industrially important electrolytic processes generate bubbles of chlorine or oxygen, and hydrogen, which accumulate with height, decreasing electrolyte conductivities, increasing specific electrical energy consumptions and distorting current density distributions.
Links
Publications
Journals
Sadeek SA, Bedoya-Lora FE, Campbell KS, et al. , 2022, Formation of protective surface films on carbon steel in mildly alkaline aqueous alkanolamine CO2 solutions, Corrosion Science, Vol:211, ISSN:0010-938X
Farandos NM, Jang I, Alexander JC, et al. , 2022, 3-D inkjet printed solid oxide electrochemical reactors III. cylindrical pillared electrode microstructures, Electrochimica Acta, Vol:426, ISSN:0013-4686, Pages:1-10
Jang I, Alexander JC, Farandos NM, et al. , 2022, Predicting optimal geometries of 3D-printed solid oxide electrochemical reactors, Electrochimica Acta, Vol:427, ISSN:0013-4686, Pages:1-12
Kallitsis E, Korre A, Kelsall G, 2022, Life cycle assessment of recycling options for automotive Li-ion battery packs, Journal of Cleaner Production, Vol:371
Kawale SS, Jang I, Farandos NM, et al. , 2022, Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: a review, Reaction Chemistry and Engineering, Vol:7, ISSN:2058-9883