Imperial College London

ProfessorGeoffKelsall

Faculty of EngineeringDepartment of Chemical Engineering

Emeritus Professor of Electrochemical Engineering
 
 
 
//

Contact

 

g.kelsall Website

 
 
//

Location

 

RODH 302Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Li:2019:10.1038/s41467-019-09427-z,
author = {Li, T and Heenan, TMM and Rabuni, MF and Wang, B and Farandos, NM and Kelsall, GH and Matras, D and Tang, C and Lu, X and Jacques, SDM and Brett, DJL and Shearing, PR and Di, Michiel M and Beale, AM and Vamvakeros, A and Li, K and Li, T and Heenan, TMM and Rabuni, MF and Wang, B and Farandos, NM and Kelsall, GH and Matras, D and Tan, C and Lu, X and Jacques, SDM and Brett, DJL and Shearing, PR and Di, Michiel M and Beale, AM and Vamvakeros, A and Li, K},
doi = {10.1038/s41467-019-09427-z},
journal = {Nature Communications},
pages = {1--11},
title = {Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography},
url = {http://dx.doi.org/10.1038/s41467-019-09427-z},
volume = {10},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Ceramic fuel cells offer a clean and efficient means of producing electricity through a variety of fuels. However, miniaturization of cell dimensions for portable device application remains a challenge, as volumetric power densities generated by readily-available planar/tubular ceramic cells are limited. Here, we demonstrate a concept of ‘micro-monolithic’ ceramic cell design. The mechanical robustness and structural integrity of this design is thoroughly investigated with real-time, synchrotron X-ray diffraction computed tomography, suggesting excellent thermal cycling stability. The successful miniaturization results in an exceptional power density of 1.27 W cm−2 at 800 °C, which is among the highest reported. This holistic design incorporates both mechanical integrity and electrochemical performance, leading to mechanical property enhancement and representing an important step toward commercial development of portable ceramic devices with high volumetric power (>10 W cm−3), fast thermal cycling and marked mechanical reliability.
AU - Li,T
AU - Heenan,TMM
AU - Rabuni,MF
AU - Wang,B
AU - Farandos,NM
AU - Kelsall,GH
AU - Matras,D
AU - Tang,C
AU - Lu,X
AU - Jacques,SDM
AU - Brett,DJL
AU - Shearing,PR
AU - Di,Michiel M
AU - Beale,AM
AU - Vamvakeros,A
AU - Li,K
AU - Li,T
AU - Heenan,TMM
AU - Rabuni,MF
AU - Wang,B
AU - Farandos,NM
AU - Kelsall,GH
AU - Matras,D
AU - Tan,C
AU - Lu,X
AU - Jacques,SDM
AU - Brett,DJL
AU - Shearing,PR
AU - Di,Michiel M
AU - Beale,AM
AU - Vamvakeros,A
AU - Li,K
DO - 10.1038/s41467-019-09427-z
EP - 11
PY - 2019///
SN - 2041-1723
SP - 1
TI - Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography
T2 - Nature Communications
UR - http://dx.doi.org/10.1038/s41467-019-09427-z
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000462986000001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://www.nature.com/articles/s41467-019-09427-z
UR - http://hdl.handle.net/10044/1/67629
VL - 10
ER -