Imperial College London

MsRosalbaGarcia Millan

Faculty of Natural SciencesDepartment of Mathematics

Research Postgraduate
 
 
 
//

Contact

 

garciamillan16 Website

 
 
//

Location

 

Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Corral:2016:10.1371/journal.pone.0161586,
author = {Corral, A and Garcia-Millan, R and Font-Clos, F},
doi = {10.1371/journal.pone.0161586},
journal = {PLoS ONE},
pages = {1--17},
title = {Exact derivation of a finite-size scaling law and corrections to scaling in the geometric galton-watson process},
url = {http://dx.doi.org/10.1371/journal.pone.0161586},
volume = {11},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary.
AU - Corral,A
AU - Garcia-Millan,R
AU - Font-Clos,F
DO - 10.1371/journal.pone.0161586
EP - 17
PY - 2016///
SN - 1932-6203
SP - 1
TI - Exact derivation of a finite-size scaling law and corrections to scaling in the geometric galton-watson process
T2 - PLoS ONE
UR - http://dx.doi.org/10.1371/journal.pone.0161586
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000382855600043&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/50405
VL - 11
ER -