Imperial College London

ProfessorHenriqueAraujo

Faculty of Natural SciencesDepartment of Physics

Professor of Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7549h.araujo

 
 
//

Location

 

510Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

161 results found

Akerib DS, Akerlof CW, Alqahtani A, Alsum SK, Anderson TJ, Angelides N, Araújo HM, Armstrong JE, Arthurs M, Bai X, Balajthy J, Balashov S, Bang J, Baxter A, Bensinger J, Bernard EP, Bernstein A, Bhatti A, Biekert A, Biesiadzinski TP, Birch HJ, Boast KE, Boxer B, Brás P, Buckley JH, Bugaev VV, Burdin S, Busenitz JK, Cabrita R, Carels C, Carlsmith DL, Carmona-Benitez MC, Cascella M, Chan C, Chott NI, Cole A, Cottle A, Cutter JE, Dahl CE, de Viveiros L, Dobson JEY, Druszkiewicz E, Edberg TK, Eriksen SR, Fan A, Fiorucci S, Flaecher H, Fraser ED, Fruth T, Gaitskell RJ, Genovesi J, Ghag C, Gibson E, Gilchriese MGD, Gokhale S, van der Grinten MGD, Hall CR, Harrison A, Haselschwardt SJ, Hertel SA, Hor JY-K, Horn M, Huang DQ, Ignarra CM, Jahangir O, Ji W, Johnson J, Kaboth AC, Kamaha AC, Kamdin K, Kazkaz K, Khaitan D, Khazov A, Khurana I, Kocher CD, Korley L, Korolkova EV, Kras J, Kraus H, Kravitz S, Kreczko L, Krikler B, Kudryavtsev VA, Leason EA, Lee J, Leonard DS, Lesko KT, Levy C, Li J, Liao J, Liao F-T, Lin J, Lindote A, Linehan R, Lippincott WH, Liu R, Liu X, Loniewski C, Lopes MI, López Paredes B, Lorenzon W, Luitz S, Lyle JM, Majewski PA, Manalaysay A, Manenti L, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, McLaughlin J, Meng Y, Miller EH, Mizrachi E, Monte A, Monzani ME, Morad JA, Morrison E, Mount BJ, Murphy ASJ, Naim D, Naylor A, Nedlik C, Nehrkorn C, Nelson HN, Neves F, Nikoleyczik JA, Nilima A, O'Sullivan K, Olcina I, Oliver-Mallory KC, Pal S, Palladino KJ, Palmer J, Parveen N, Pease EK, Penning B, Pereira G, Pushkin K, Reichenbacher J, Rhyne CA, Riffard Q, Rischbieter GRC, Rosero R, Rossiter P, Rutherford G, Santone D, Sazzad ABMR, Schnee RW, Schubnell M, Seymour D, Shaw S, Shutt TA, Silk JJ, Silva C, Smith R, Solmaz M, Solovov VN, Sorensen P, Stancu I, Stevens A, Stifter K, Sumner TJ, Swanson N, Szydagis M, Tan M, Taylor WC, Taylor R, Temples DJ, Terman PA, Tiedt DR, Timalsina M, Tomás A, Tripathi M, Tronstad DR, Turner W, Tvrznikova L, Utku U, Vacheret Aet al., 2020, Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of 136Xe, Physical Review C, Vol: 102, Pages: 014602 – 1-014602 – 13, ISSN: 2469-9985

The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to 136Xe neutrinoless double β decay, taking advantage of the significant (>600 kg) 136Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of 136Xe is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with 136Xe at 1.06×1027 years.

Journal article

El-Neaj YA, Alpigiani C, Amairi-Pyka S, Araujo H, Balaz A, Bassi A, Bathe-Peters L, Battelier B, Belic A, Bentine E, Bernabeu J, Bertoldi A, Bingham R, Blas D, Bolpasi V, Bongs K, Bose S, Bouyer P, Bowcock T, Bowden W, Buchmueller O, Burrage C, Calmet X, Canuel B, Caramete L-I, Carroll A, Cella G, Charmandaris V, Chattopadhyay S, Chen X, Chiofalo ML, Coleman J, Cotter J, Cui Y, Derevianko A, De Roeck A, Djordjevic GS, Dornan P, Doser M, Drougkakis I, Dunningham J, Dutan I, Easo S, Elertas G, Ellis J, El Sawy M, Fassi F, Felea D, Feng C-H, Flack R, Foot C, Fuentes I, Gaaloul N, Gauguet A, Geiger R, Gibson V, Giudice G, Goldwin J, Grachov O, Graham PW, Grasso D, Van der Grinten M, Guendogan M, Haehnelt MG, Harte T, Hees A, Hobson R, Hogan J, Holst B, Holynski M, Kasevich M, Kavanagh BJ, Von Klitzing W, Kovachy T, Krikler B, Krutzik M, Lewicki M, Lien Y-H, Liu M, Luciano GG, Magnon A, Mahmoud MA, Malik S, McCabe C, Mitchell J, Pahl J, Pal D, Pandey S, Papazoglou D, Paternostro M, Penning B, Peters A, Prevedelli M, Puthiya-Veettil V, Quenby J, Rasel E, Ravenhall S, Ringwood J, Roura A, Sabulsky D, Sameed M, Sauer B, Schaffer SA, Schiller S, Schkolnik V, Schlippert D, Schubert C, Sfar HR, Shayeghi A, Shipsey I, Signorini C, Singh Y, Soares-Santos M, Sorrentino F, Sumner T, Tassis K, Tentindo S, Tino GM, Tinsley JN, Unwin J, Valenzuela T, Vasilakis G, Vaskonen V, Vogt C, Webber-Date A, Wenzlawski A, Windpassinger P, Woltmann M, Yazgan E, Zhan M-S, Zou X, Zupan Jet al., 2020, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ QUANTUM TECHNOLOGY, Vol: 7, ISSN: 2662-4400

Journal article

Akerib DS, Akerlof CW, Alsum SK, Araujo HM, Arthurs M, Bai X, Bailey AJ, Balajthy J, Balashov S, Bauer D, Belle J, Beltrame P, Benson T, Bernard EP, Biesiadzinski TP, Boast KE, Boxer B, Bras P, Buckley JH, Bugaev VV, Burdin S, Busenitz JK, Carels C, Carlsmith DL, Carlson B, Carmona-Benitez MC, Chan C, Cherwinka JJ, Cole A, Cottle A, Craddock WW, Currie A, Cutter JE, Dahl CE, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Edberg TK, Edwards WR, Fan A, Fayer S, Fiorucci S, Fruth T, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, van der Grinten MGD, Hall CR, Hans S, Hanzel K, Haselschwardt SJ, Hertel SA, Hillbrand S, Hjemfelt C, Hoff MD, Hor JY-K, Huang DQ, Ignarra CM, Ji W, Kaboth AC, Kamdin K, Keefner J, Khaitan D, Khazov A, Kim YD, Kocher CD, Korolkova E, Kraus H, Krebs HJ, Kreczko L, Krikler B, Kudryavtsev VA, Kyre S, Lee J, Lenardo BG, Leonard DS, Lesko KT, Levy C, Li J, Liao J, Liao F-T, Lin J, Lindote A, Linehan R, Lippincott WH, Liu X, Lopes M, Paredes BL, Lorenzon W, Luitz S, Lyle JM, Majewski P, Manalaysay A, Mannino RL, Maupin C, McKinsey DN, Meng Y, Miller EH, Mock J, Monzani ME, Morad JA, Morrison E, Mount BJ, Murphy ASJ, Nelson HN, Neves F, Nikoleyczik J, O'Sullivan K, Olcina I, Olevitch MA, Oliver-Mallory KC, Palladino KJ, Patton SJ, Pease EK, Penning B, Piepke A, Powell S, Preece RM, Pushkin K, Ratcliff BN, Reichenbacher J, Rhyne CA, Richards A, Rodrigues JP, Rosero R, Rossiter P, Saba JS, Sarychev M, Schnee RW, Schubnell M, Scovell PR, Shaw S, Shutt TA, Silk JJ, Silva C, Skarpaas K, Skulski W, Solmaz M, Solovov VN, Sorensen P, Stancu I, Stark MR, Stiegler TM, Stifter K, Szydagis M, Taylor WC, Taylor R, Taylor DJ, Temples D, Terman PA, Thomas KJ, Timalsina M, To WH, Tomas A, Tope TE, Tripathi M, Tull CE, Tvrznikova L, Utku U, Vavra J, Vacheret A, Verbus JR, Voirin E, Waldron WL, Watson JR, Webb RC, White DT, Whitis TJ, Wisniewski WJ, Witherell MS, Wolfs FLH, Woodward D, Worm SD, Yeh M, Yin J, Young Iet al., 2020, Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 101, Pages: 1-17, ISSN: 1550-2368

LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4×10−48  cm2 for a 40  GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3×10−43  cm2 (7.1×10−42  cm2) for a 40  GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.

Journal article

Akerib DS, Akerlof CW, Alsum SK, Angelides N, Araujo HM, Armstrong JE, Arthurs M, Bai X, Balajthy J, Balashov S, Baxter A, Bernard EP, Biekert A, Biesiadzinski TP, Boast KE, Boxer B, Bras P, Buckley JH, Bugaev VV, Burdin S, Busenitz JK, Carels C, Carlsmith DL, Carmona-Benitez MC, Cascella M, Chan C, Cole A, Cottle A, Cutter JE, Dahl CE, de Viveiros L, Dobson JEY, Druszkiewicz E, Edberg TK, Fan A, Fiorucci S, Flaecher H, Fruth T, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gokhale S, van der Grinten MGD, Hall CR, Hans S, Harrison J, Haselschwardt SJ, Hertel SA, Hor JY-K, Horn M, Huang DQ, Ignarra CM, Jahangir O, Ji W, Johnson J, Kaboth AC, Kamdin K, Khaitan D, Khazov A, Kim WT, Kocher CD, Korley L, Korolkova E, Kras J, Kraus H, Kravitz SW, Kreczko L, Krikler B, Kudryavtsev VA, Leason EA, Lee J, Leonard DS, Lesko KT, Levy C, Li J, Liao J, Liao F-T, Lin J, Lindote A, Linehan R, Lippincott WH, Liu R, Liu X, Loniewski C, Lopes M, Paredes BL, Lorenzon W, Luitz S, Lyle JM, Majewski PA, Manalaysay A, Manenti L, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, McLaughlin J, Meng Y, Miller EH, Monzani ME, Morad JA, Morrison E, Mount BJ, Murphy ASJ, Naim D, Naylor A, Nedlik C, Nehrkorn C, Nelson HN, Neves F, Nikoleyczik J, Nilima A, Olcina I, Oliver-Mallory KC, Pal S, Palladino KJ, Pease EK, Penning BP, Pereira G, Piepke A, Pushkin K, Reichenbacher J, Rhyne CA, Riffard Q, Rischbieter GRC, Rodrigues JP, Rosero R, Rossiter P, Rutherford G, Sazzad ABMR, Schnee RW, Schubnell M, Scovell PR, Seymour D, Shaw S, Shutt TA, Silk JJ, Silva C, Solmaz M, Solovov VN, Sorensen P, Stancul I, Stevens A, Stiegler TM, Stifter K, Szydagis M, Taylor WC, Taylors R, Temples D, Terman PA, Tiedt DR, Timalsina M, Tomas A, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Vacheret A, Wang JJ, Watson JR, Webb RC, White RG, Whitis TJ, Wolfs FLH, Woodward D, Yin Jet al., 2020, Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility, Astroparticle Physics, Vol: 116, Pages: 1-10, ISSN: 0927-6505

Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0–3300 keV) varied from 596 Hz to 1355 Hz for unshielded measurements, corresponding to a total flux from the cavern walls of 1.9 ± 0.4 γ cms. The resulting activity in the walls of the cavern can be characterised as 220 ± 60 Bq/kg of 40K, 29 ± 15 Bq/kg of 238U, and 13 ± 3 Bq/kg of 232Th.

Journal article

Akerib DS, Akerlof CW, Akimov DY, Alquahtani A, Alsum SK, Anderson TJ, Angelides N, Araujo HM, Arbuckle A, Armstrong JE, Arthurs M, Auyeung H, Bai X, Bailey AJ, Balajthy J, Balashov S, Bang J, Barry MJ, Barthel J, Bauer D, Bauer P, Baxter A, Belle J, Beltrame P, Bensinger J, Benson T, Bernard EP, Bernstein A, Bhatti A, Biekert A, Biesiadzinski TP, Birrittella B, Boast KE, Bolozdynya A, Boulton EM, Boxer B, Bramante R, Branson S, Bras P, Breidenbach M, Buckley JH, Bugaev VV, Bunker R, Burdin S, Busenitz JK, Campbell JS, Carels C, Carlsmith DL, Carlson B, Carmona-Benitez MC, Cascella M, Chan C, Cherwinka JJ, Chiller AA, Chiller C, Chott N, Cole A, Coleman J, Colling D, Conley RA, Cottle A, Coughlen R, Craddock WW, Curran D, Currie A, Cutter JE, da Cunha JP, Dahl CE, Dardin S, Dasu S, Davis J, Davison TJR, de Viveiros L, Decheine N, Dobi A, Dobson JEY, Druszkiewicz E, Dushkin A, Edberg TK, Edwards WR, Edwards BN, Edwards J, Elnimr MM, Emmet WT, Eriksen SR, Faham CH, Fan A, Fayer S, Fiorucci S, Flaecher H, Florang IMF, Ford P, Francis VB, Froborg F, Fruth T, Gaitskell RJ, Gantos NJ, Garcia D, Geffre A, Gehman VM, Gelfand R, Genovesi J, Gerhard RM, Ghag C, Gibson E, Gilchriese MGD, Gokhale S, Gomber B, Gonda TG, Greenall A, Greenwood S, Gregerson G, van der Grinten MGD, Gwilliam CB, Hall CR, Hamilton D, Hans S, Hanzel K, Harrington T, Harrison A, Hasselkus C, Haselschwardt SJ, Hemer D, Hertel SA, Heise J, Hillbrand S, Hitchcock O, Hjemfelt C, Hoff MD, Holbrook B, Holtom E, Hor JY-K, Horn M, Huang DQ, Hurteau TW, Ignarra CM, Irving MN, Jacobsen RG, Jahangir O, Jeffery SN, Ji W, Johnson M, Johnson J, Johnson P, Jones WG, Kaboth AC, Kamaha A, Kamdin K, Kasey V, Kazkaz K, Keefner J, Khaitan D, Khaleeq M, Khazov A, Khromov A, Khurana I, Kim YD, Kim WT, Kocher CD, Konovalov AM, Korley L, Korolkova E, Koyuncu M, Kras J, Kraus H, Kravitz SW, Krebs HJ, Kreczko L, Krikler B, Kudryavtsev VA, Kumpan A, Kyre S, Lambert AR, Landerud B, Larsen NA, Laundrie A, Leason EA, Lee HS, Lee Jet al., 2020, The LUX-ZEPLIN (LZ) experiment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, Vol: 953, Pages: 1-22, ISSN: 0168-9002

We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Baxter A, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, de Viveiros L, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Korolkova EV, Kravitz S, Kudryavtsev VA, Leason E, Lenardo BG, Lesko KT, Lin JLJ, Lindote A, Lopes MI, Paredes BL, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei DM, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Nilima A, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor R, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Vacheret A, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Zhang Cet al., 2020, Extending light WIMP searches to single scintillation photons in LUX, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 101, Pages: 1-11, ISSN: 1550-2368

We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a twofold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5  GeV/c2 WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments.

Journal article

Collaboration TLUX-ZEPLIN, Akerib DS, Akerlof CW, Alquahtani A, Alsum SK, Anderson TJ, Angelides N, Araújo HM, Armstrong JE, Arthurs M, Bai X, Balajthy J, Balashov S, Bang J, Bauer D, Baxter A, Bensinger J, Bernard EP, Bernstein A, Bhatti A, Biekert A, Biesiadzinski TP, Birch HJ, Boast KE, Boxer B, Brás P, Buckley JH, Bugaev VV, Burdin S, Busenitz JK, Cabrita R, Carels C, Carlsmith DL, Carmona-Benitez MC, Cascella M, Chan C, Chott NI, Cole A, Cottle A, Cutter JE, Dahl CE, Viveiros LD, Dobson JEY, Druszkiewicz E, Edberg TK, Eriksen SR, Fan A, Fayer S, Fiorucci S, Flaecher H, Fraser ED, Fruth T, Gaitskell RJ, Genovesi J, Ghag C, Gibson E, Gilchriese MGD, Gokhale S, Grinten MGDVD, Hall CR, Harrison A, Haselschwardt SJ, Hertel SA, Hor JY-K, Horn M, Huang DQ, Ignarra CM, Jahangir O, Ji W, Johnson J, Kaboth AC, Kamaha AC, Kamdin K, Kazkaz K, Khaitan D, Khazov A, Khurana I, Kocher CD, Korley L, Korolkova EV, Kras J, Kraus H, Kravitz S, Kreczko L, Krikler B, Kudryavtsev VA, Leason EA, Lee J, Leonard DS, Lesko KT, Levy C, Li J, Liao J, Liao F-T, Lin J, Lindote A, Linehan R, Lippincott WH, Liu R, Liu X, Loniewski C, Lopes MI, Paredes BL, Lorenzon W, Luitz S, Lyle JM, Majewski PA, Manalaysay A, Manenti L, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, McLaughlin J, Meng Y, Miller EH, Mizrachi E, Monte A, Monzani ME, Morad JA, Morrison E, Mount BJ, Murphy ASJ, Naim D, Naylor A, Nedlik C, Nehrkorn C, Nelson HN, Neves F, Nikoleyczik JA, Nilima A, Olcina I, Oliver-Mallory KC, Pal S, Palladino KJ, Palmer J, Parveen N, Pease EK, Penning B, Pereira G, Piepke A, Pushkin K, Reichenbacher J, Rhyne CA, Richards A, Riffard Q, Rischbieter GRC, Rosero R, Rossiter P, Rutherford G, Santone D, Sazzad ABMR, Schnee RW, Schubnell M, Seymour D, Shaw S, Shutt TA, Silk JJ, Silva C, Smith R, Solmaz M, Solovov VN, Sorensen P, Stancu I, Stevens A, Stifter K, Sumner TJ, Swanson N, Szydagis M, Tan M, Taylor WC, Taylor R, Temples DJ, Terman PA, Tiedt DR, Timalsina M, Tomás A, Tripathi M, Tronstad DR Tet al., 2020, Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment, Publisher: arXiv

The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to theWIMP-nucleon spin-independent cross-section down to (1-2) $\times$ $10^{-12}$pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulationsframework that, along with radioactivity measurements, was used to support thisprojection, and also to provide mock data for validating reconstruction andanalysis software. Of particular note are the event generators, which allow usto model the background radiation, and the detector response physics used inthe production of raw signals, which can be converted into digitized waveformssimilar to data from the operational detector. Inclusion of the detectorresponse allows us to process simulated data using the same analysis routinesas developed to process the experimental data.

Working paper

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Baxter A, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, de Viveiros L, Druszkiewicz E, Fan A, Fiorucci S, Gaitskell RJ, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Korolkova EV, Kravitz S, Kudryavtsev VA, Leason E, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei D-M, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Nilima A, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor R, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Vacheret A, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Zhang Cet al., 2020, First direct detection constraint on mirror dark matter kinetic mixing using LUX 2013 data, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 101, Pages: 012003 – 1-012003 – 8, ISSN: 1550-2368

We present the results of a direct detection search for mirror dark matter interactions, using data collected from the Large Underground Xenon experiment during 2013, with an exposure of 95 live−days×118  kg. Here, the calculations of the mirror electron scattering rate in liquid xenon take into account the shielding effects from mirror dark matter captured within the Earth. Annual and diurnal modulation of the dark matter flux and atomic shell effects in xenon are also accounted for. Having found no evidence for an electron recoil signal induced by mirror dark matter interactions we place an upper limit on the kinetic mixing parameter over a range of local mirror electron temperatures between 0.1 and 0.9 keV. This limit shows significant improvement over the previous experimental constraint from orthopositronium decays and significantly reduces the allowed parameter space for the model. We exclude mirror electron temperatures above 0.3 keV at a 90% confidence level, for this model, and constrain the kinetic mixing below this temperature.

Journal article

Collaboration TLUX, Akerib DS, Alsum S, Araújo HM, Bai X, Balajthy J, Baxter A, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Brás P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Viveiros LD, Druszkiewicz E, Fan A, Fiorucci S, Gaitskell RJ, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Korolkova EV, Kravits S, Kudryavtsev VA, Leason E, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei DM, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Nilima A, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor R, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Vacheret A, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Zhang Cet al., 2019, Improved modeling of $β$ electronic recoils in liquid xenon using LUX calibration data, Publisher: arxiv

We report here methods and techniques for creating and improving a model thatreproduces the scintillation and ionization response of a dual-phase liquid andgaseous xenon time-projection chamber. Starting with the recent release of theNoble Element Simulation Technique (NEST v2.0), electronic recoil data from the$\beta$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX)detector were used to tune the model, in addition to external data sets thatallow for extrapolation beyond the LUX data-taking conditions. This paper alsopresents techniques used for modeling complicated temporal and spatial detectorpathologies that can adversely affect data using a simplified model framework.The methods outlined in this report show an example of the robust applicationspossible with NEST v2.0, while also providing the final electronic recoil modeland detector parameters that will used in the new analysis package, the LUXLegacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction ofthe LUX data. As accurate background reproduction is crucial for the success ofrare-event searches, such as dark matter direct detection experiments, thetechniques outlined here can be used in other single-phase and dual-phase xenondetectors to assist with accurate ER background reproduction.

Working paper

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Baxter A, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, de Viveiros L, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Korolkova E, Kravitz S, Kudryavtsev VA, Leason E, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes M, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei D-M, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Nilima A, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor R, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Vacheret A, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Zhang Cet al., 2019, Improved measurements of the beta-decay response of liquid xenon with the LUX detector, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 100, ISSN: 1550-2368

We report results from an extensive set of measurements of the β-decay response in liquid xenon. These measurements are derived from high-statistics calibration data from injected sources of both 3H and 14C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491  V/cm, and for energies ranging from 1.5 to 145 keV.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Davison TJR, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Korolkova E, Kravitz S, Kudryavtsev VA, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes M, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei D-M, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Yazdani K, Zhang Cet al., 2019, Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data, PHYSICAL REVIEW LETTERS, Vol: 122, ISSN: 0031-9007

Journal article

Tomás A, Araújo HM, Bailey AJ, Bayer A, Chen E, López Paredes B, Sumner TJet al., 2018, Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers, Astroparticle Physics, Vol: 103, Pages: 49-61, ISSN: 0927-6505

Noble liquid radiation detectors have long been afflicted by spurious electron emission from their cathodic electrodes. This phenomenon must be understood and mitigated in the next generation of liquid xenon (LXe) experiments searching for WIMP dark matter or neutrinoless double beta decay, and in the large liquid argon (LAr) detectors for the long-baseline neutrino programmes. We present a systematic study of this spurious emission involving a series of slow voltage-ramping tests on fine metal wires immersed in a two-phase xenon time projection chamber with single electron sensitivity. Emission currents as low as 10−18A can thus be detected by electron counting, a vast improvement over previous dedicated measurements. Emission episodes were recorded at surface fields as low as ∼ 10 kV/cm in some wires and observed to have complex emission patterns, with average rates of 10–200 counts per second (c/s) and outbreaks as high as ∼ 106c/s. A fainter, less variable type of emission was also present in all untreated samples. There is evidence of a partial conditioning effect, with subsequent tests yielding on average fewer emitters occurring at different fields for the same wire. We find no evidence for an intrinsic threshold particular to the metal-LXe interface which might have limited previous experiments up to fields of at least 160 kV/cm. The general phenomenology is not consistent with enhanced field emission from microscopic filaments, but it appears instead to be related to the quality of the wire surface in terms of corrosion and the nature of its oxide layer. This study concludes that some surface treatments, in particular nitric acid cleaning applied to stainless steel wires, can bring about at least order-of-magnitude improvements in overall electron emission rates, and this should help the next generation of detectors achieve the required electrostatic performance.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Davison TJR, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Grace E, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Korolkova EV, Kravitz S, Kudryavtsev VA, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei D-M, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, Oliver-Mallory KC, Palladino KJ, Pease EK, Rischbieter G, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Yazdani K, Zhang Cet al., 2018, LUX trigger efficiency, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol: 908, Pages: 401-410, ISSN: 0168-9002

The Large Underground Xenon experiment (LUX) searches for dark matter using a dual-phase xenon detector. LUX uses a custom-developed trigger system for event selection. In this paper, the trigger efficiency, which is defined as the probability that an event of interest is selected for offline analysis, is studied using raw data obtained from both electron recoil (ER) and nuclear recoil (NR) calibrations. The measured efficiency exceeds 98% at a pulse area of 90 detected photons, which is well below the WIMP analysis threshold on the S2 pulse area. The efficiency also exceeds 98% at recoil energies of 0.2 keV and above for ER, and 1.3 keV and above for NR. The measured trigger efficiency varies between 99% and 100% over the fiducial volume of the detector.

Journal article

Paredes BL, Araujo HM, Froborg E, Marangou N, Olcina I, Sumner TJ, Taylor R, Tomas A, Vacheret Aet al., 2018, Response of photomultiplier tubes to xenon scintillation light, Astroparticle Physics, Vol: 102, Pages: 56-66, ISSN: 0927-6505

We present the precision calibration of 35 Hamamatsu R11410-22 photomultiplier tubes (PMTs) with xenon scintillation light centred near 175 nm. This particular PMT variant was developed specifically for the LUX-ZEPLIN (LZ) dark matter experiment. A room-temperature xenon scintillation cell coupled to a vacuum cryostat was used to study the full-face PMT response at both room and low temperature ( ∼ −100 °C), in particular to determine the quantum efficiency (QE) and double photoelectron emission (DPE) probability in LZ operating conditions. For our sample with an average QE of (32.4  ±  2.9)% at room temperature, we find a relative improvement of (17.9  ±  5.2)% upon cooling (where uncertainty values refer to the sample standard deviation). The mean DPE probability in response to single vacuum ultraviolet (VUV) photons is (22.6  ±  2.0)% at low temperature; the DPE increase relative to room temperature, measured here for the first time, was (12.2  ±  3.9)%. Evidence of a small triple photoelectron emission probability ( ∼ 0.6%) has also been observed. Useful correlations are established between these parameters and the QE as measured by the manufacturer. The single VUV photon response is also measured for one ETEL D730/9829QB, a PMT with a more standard bialkali photocathode used in the ZEPLIN-III experiment, for which we obtained a cold DPE fraction of (9.1  ±  0.1)%. Hence, we confirm that this effect is not restricted to the low-temperature bialkali photocathode technology employed by Hamamatsu. This highlights the importance of considering this phenomenon in the interpretation of data from liquid xenon scintillation and electroluminescence detectors, and from many other optical measurements in this wavelength region.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Bras P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Davison TJR, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Korolkova EV, Kravitz S, Kudryavtsev VA, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei D-M, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, Oliver-Mallory KC, Palladino KJ, Pease EK, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Yazdani K, Zhang Cet al., 2018, Search for annual and diurnal rate modulations in the LUX experiment, Physical Review D - Particles, Fields, Gravitation and Cosmology, Vol: 98, ISSN: 1550-2368

Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth’s motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.3±0.2 cpd/keVee/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26 keVee. Between 2 and 6 keVee, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2σ tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2 cpd/keVee/tonne amplitude between 2 and 6 keVee.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Druszkiewicz E, Edwards BN, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Lenardo BG, Lesko KT, Liao J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2018, Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector, PHYSICAL REVIEW D, Vol: 97, ISSN: 2470-0010

Weakly interacting massive particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013–2016 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46 keV, and we make, to our knowledge, a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74 keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Gehman VM, Genovesi J, Ghag C, Gilchriese GD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2018, Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment, PHYSICAL REVIEW D, Vol: 97, ISSN: 2470-0010

The LUX experiment has performed searches for dark-matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from 1.4×104  kg days of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers’ response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Druszkiewicz E, Edwards BN, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2018, Position reconstruction in LUX, Journal of Instrumentation, Vol: 13, ISSN: 1748-0221

The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including ⁸³mKr (releasing a total energy of 41.5 keV) and ³H (β− with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV) . Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of σ = 0.82 cm and σ = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies ~0.25 keV and ~10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balaithy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Druszkiewicz E, Edwards BN, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghang C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkom C, Nelson HN, Neves F, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Ultralow energy calibration of LUX detector using Xe-127 electron capture, PHYSICAL REVIEW D, Vol: 96, ISSN: 2470-0010

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Druszkiewicz E, Edwards BN, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, 83mKr calibration of the 2013 LUX dark matter search, Physical Review D - Particles, Fields, Gravitation and Cosmology, Vol: 96, ISSN: 1550-2368

LUX was the first dark matter experiment to use a 83mKr calibration source. In this paper, we describe the source preparation and injection. We also present several 83mKr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Currie A, Cutter JE, Davison TJR, Dobi A, Druszkiewicz E, Edwards BN, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, 3D modeling of electric fields in the LUX detector, Journal of Instrumentation, Vol: 12, ISSN: 1748-0221

This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to −5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

Journal article

Scovell PR, Meehan E, Araújo HM, Dobson J, Ghag C, Kraus H, Kudryavtsev VA, Liu XR, Majewski P, Paling SM, Preece RM, Saakyan R, Tomás A, Toth C, Yeoman LMet al., 2017, Low-background gamma spectroscopy at the Boulby Underground Laboratory, Astroparticle Physics, Vol: 97, Pages: 160-173, ISSN: 0927-6505

The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210 Pb and 234 Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6mBqkg −1 for 234 Th and 6.6mBqkg −1 for 210 Pb both of which have uncovered some significant equilibrium breaks in the 238 U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9mBqkg −1 for 226 Ra, 1.1mBqkg −1 for 228 Ra, 0.3mBqkg −1 for 224 Ra, and 8.6mBqkg −1 for 40 K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.

Journal article

Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Coffey T, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Pech K, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen Pet al., 2017, Chromatographic separation of radioactive noble gases from xenon, Astroparticle Physics, Vol: 97, Pages: 80-87, ISSN: 0927-6505

The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85 Kr and 39 Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

Journal article

Akerib DS, Akerlof CW, Akimov DY, Alsum SK, Araujo HM, Arnquist IJ, Arthurs M, Bai X, Bailey AJ, Balajthy J, Balashov S, Barry MJ, Belle J, Beltrame P, Benson T, Bernard EP, Bernstein A, Biesiadzinski TP, Boast KE, Bolozdynya A, Boxer B, Bramante R, Bras P, Buckley JH, Bugaev VV, Bunker R, Burdin S, Busenitz JK, Carels C, Carlsmith DL, Carlson B, Carmona-Benitez MC, Chan C, Cherwinka JJ, Chiller AA, Chiller C, Cottle A, Coughlen R, Craddock WW, Currie A, Dahl CE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edberg TK, Edwards WR, Emmet WT, Faham CH, Fiorucci S, Fruth T, Gaitskell RJ, Gantos N, Gehman VM, Gerhard RM, Ghag C, Gilchriese MGD, Gomber B, Hall CR, Hans S, Hanzel K, Haselschwardt S, Hertel SA, Hillbrand S, Hjernfelt C, Hoff MD, Holbrook B, Holtom E, Hoppe EW, Hor JY-K, Horn M, Huang DQ, Hurteau TW, Ignarra CM, Jacobsen RG, Ji W, Kaboth A, Kamdin K, Kazkaz K, Khaitan D, Khazov A, Khromov AV, Konovalov AM, Korolkova EV, Koyuncu M, Kraus H, Krebs HJ, Kudryavtsev VA, Kumpan AV, Kyre S, Lee C, Lee HS, Lee J, Leonard DS, Leonard R, Lesko KT, Levy C, Liao F-T, Lin J, Lindote A, Linehan RE, Lippincott WH, Liu X, Lopes MI, Paredes BL, Lorenzon W, Luitz S, Majewski P, Manalaysay A, Manenti L, Mannino RL, Markley DJ, Martin TJ, Marzioni MF, McConnell CT, McKinsey DN, Mei D-M, Meng Y, Miller EH, Mizrachi E, Mock J, Monzani ME, Morad JA, Mount BJ, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, Nikkel JA, O'Dell J, O'Sullivan K, Olcina I, Olevitch MA, Oliver-Mallory KC, Palladino KJ, Pease EK, Piepke A, Powell S, Preece RM, Pushkin K, Ratcliff BN, Reichenbacher J, Reichhart L, Rhyne CA, Richards A, Rodrigues JP, Rose HJ, Rosero R, Rossiter P, Saba JS, Sarychev M, Schnee RW, Schubnell M, Scovell PR, Shaw S, Shutt TA, Silva C, Skarpaas K, Skulski W, Solmaz M, Solovov VN, Sorensen P, Sosnovtsev VV, Stancu I, Stark MR, Stephenson S, Stiegler TM, Stifter K, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Temples D, Terman PA, Thomas KJ, Thomson JA, Tiedt DR, Timalsina M, To WHet al., 2017, Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches, Astroparticle Physics, Vol: 96, Pages: 1-10, ISSN: 0927-6505

The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue  < 1.6 mBq/kg, 238Ul  < 0.09 mBq/kg, 232The=0.28±0.03 mBq/kg, 232Thl=0.25±0.02 mBq/kg, 40K  < 0.54 mBq/kg, and 60Co  < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.

Journal article

Akerib DS, Alsum S, Aquino C, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, First searches for axions and axionlike particles with the LUX experiment, Physical Review Letters, Vol: 118, ISSN: 0031-9007

The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118  kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5×10−12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12  eV/c2, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6  eV/c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2×10−13 are excluded for particle masses in the range 1–16  keV/c2. These are the most stringent constraints to date for these interactions.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Physical Review Letters, Vol: 118, ISSN: 0031-9007

We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5  kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6×10−41  cm2 (σp=5×10−40  cm2) at 35  GeV c−2, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

Journal article

Araujo HMDOP, 2017, LUX-ZEPLIN (LZ) Technical Design Report, LUX-ZEPLIN (LZ) Technical Design Report, LBNL-1007256

In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.

Report

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Signal yields, energy resolution, and recombination fluctuations in liquid xenon, Physical Review D, Vol: 95, ISSN: 2470-0010

This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Results from a search for dark matter in the complete LUX exposure, Physical Review Letters, Vol: 118, ISSN: 1079-7114

We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×104  kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50  GeV c−2, WIMP-nucleon spin-independent cross sections above 2.2×10−46  cm2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10−46  cm2 at 50  GeV c−2.

Journal article

Collaboration LUX, Akerib DS, Alsum S, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Brás P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Viveiros LD, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne CA, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2016, Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics

The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenontime projection chamber (TPC) operating at the Sanford Underground ResearchFacility in Lead, South Dakota. A calibration of nuclear recoils in liquidxenon was performed $\textit{in situ}$ in the LUX detector using a collimatedbeam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium(D-D) fusion source. The nuclear recoil energy from the first neutron scatterin the TPC was reconstructed using the measured scattering angle defined bydouble-scatter neutron events within the active xenon volume. We measured theabsolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electricfield of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to74 keV, respectively. This calibration of the nuclear recoil signal yields willpermit the further refinement of liquid xenon nuclear recoil signal models and,importantly for dark matter searches, clearly demonstrates measured ionizationand scintillation signals in this medium at recoil energies down to$\mathcal{O}$(1 keV).

Working paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00359053&limit=30&person=true