Publications
373 results found
Elliott P, Whitaker M, Tang D, et al., 2023, Design and implementation of a national SARS-CoV-2 monitoring programme in England: REACT-1 Study, American Journal of Public Health, ISSN: 0090-0036
Data System. The REal-time Assessment of Community Transmission-1 (REACT-1) Study was funded by the Department of Health and Social Care in England to provide reliable and timely estimates of prevalence of SARS-CoV-2 infection by time, person and place.Data Collection/Processing. The data were obtained by writing to named individuals aged 5 years and above in random cross-sections of the population of England, using the National Health Service (NHS) list of patients registered with a general practitioner (>99% coverage) as sampling frame. Data were collected 2-3 weekly approximately every month across 19distinct rounds of data collection from May 1, 2020 to March 31, 2022.Data Analysis/Dissemination. The data and study materials are widely disseminated via the study website, preprints, publications in peer-reviewed journals and the media. Data tabulations suitably anonymised to protect participant confidentiality are available on request to the study’s Data Access Committee.Implications. The study provided inter alia real-time data on SARS-CoV-2 prevalence over time, by area, and by socio-demographic variables; estimates of vaccine effectiveness; symptom profiles and detected emergence of new variants based on viral genome sequencing.
Atchison C, Whitaker M, Donnelly C, et al., 2023, Characteristics and predictors of persistent symptoms post COVID-19 in children and young people: a large community cross-sectional study in England, Archives of Disease in Childhood, ISSN: 0003-9888
Objective: To estimate the prevalence of, and associated risk factors for, persistent symptoms post-COVID-19 among children aged 5–17 years in England.Design: Serial cross-sectional study.Setting: Rounds 10–19 (March 2021 to March 2022) of the REal-time Assessment of Community Transmission-1 study (monthly cross-sectional surveys of random samples of the population in England).Study population: Children aged 5–17 years in the community.Predictors: Age, sex, ethnicity, presence of a pre-existing health condition, index of multiple deprivation, COVID-19 vaccination status and dominant UK circulating SARS-CoV-2 variant at time of symptom onset.Main outcome measures: Prevalence of persistent symptoms, reported as those lasting ≥3 months post-COVID-19.Results: Overall, 4.4% (95% CI 3.7 to 5.1) of 3173 5–11 year-olds and 13.3% (95% CI 12.5 to 14.1) of 6886 12–17 year-olds with prior symptomatic infection reported at least one symptom lasting ≥3 months post-COVID-19, of whom 13.5% (95% CI 8.4 to 20.9) and 10.9% (95% CI 9.0 to 13.2), respectively, reported their ability to carry out day-to-day activities was reduced ‘a lot’ due to their symptoms. The most common symptoms among participants with persistent symptoms were persistent coughing (27.4%) and headaches (25.4%) in children aged 5–11 years and loss or change of sense of smell (52.2%) and taste (40.7%) in participants aged 12–17 years. Higher age and having a pre-existing health condition were associated with higher odds of reporting persistent symptoms.Conclusions: One in 23 5–11 year-olds and one in eight 12–17 year-olds post-COVID-19 report persistent symptoms lasting ≥3 months, of which one in nine report a large impact on performing day-to-day activities.
Day S, Gleason K, Lury C, et al., 2023, 'In the picture': perspectives on living and working with cancer, Medical Humanities, Vol: 49, Pages: 83-92, ISSN: 1468-215X
We explored working and living with cancer at a large research-intensive National Health Service hospital breast cancer service and adjoining non-governmental organisation (NGO). The project had three elements that were largely autonomous in practice but conceptually integrated through a focus on personalised cancer medicine. Di Sherlock held conversations with staff and patients from which she produced a collection of poems, Written Portraits. At the same time, we conducted interviews and observation in the hospital, and hosted a public series of science cafés in the NGO. The trajectory of this project was not predetermined, but we found that the poetry residency provided a context for viewing participation in experimental cancer care and vice versa. Taking themes from the poetry practice, we show how they revealed categories of relevance to participants and illuminated others that circulated in the hospital and NGO. Reciprocally, turning to findings from long-term ethnographic research with patients, we show that their observations were not only representations but also tools for navigating life in waiting with cancer. The categories that we discovered and assembled about living and working with cancer do not readily combine into an encompassing picture, we argue, but instead provide alternating perspectives. Through analysis of different forms of research participation, we hope to contribute to an understanding of how categories are made, recognised and inhabited through situated comparisons. In personalised medicine, category-making is enabled if not dependent on increasingly intensive computation and so the practices seem far removed from mundane processes of interaction. Yet, we emphasise connections with everyday practices, in which people categorise themselves and others routinely according to what they like and resemble.
Atchison C, Moshe M, Brown J, et al., 2023, Validity of self-testing at home with rapid SARS-CoV-2 antibody detection by lateral flow immunoassay, Clinical Infectious Diseases, Vol: 76, Pages: 658-666, ISSN: 1058-4838
Background: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based ELISA and live virus neutralisation. Methods: In July 2021, 3758 participants performed, at home, a self-administered LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of IgG antibodies using the Roche Elecsys® Anti-SARS-CoV-2 assay. We compared the self-reported LFIA result to the quantitative Roche assay and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. Results: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on Roche (using the manufacturer reference standard threshold for positivity of 0.8 U ml−1). Live virus neutralisation was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% CI 71.8, 84.6), 142/155 (91.6%; 86.1, 95.5) with ALFA, and 169 (100%; 97.8, 100.0) with Roche. There were 81 samples with no detectable virus neutralisation; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI 46.5, 68.9), 34/75 (45.3%; 33.8, 57.3) with ALFA, and 0/81 (0%; 0.0, 4.5) with Roche. Conclusions: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ELISA with virus neutralisation.
Eales O, Page AJ, Tang SN, et al., 2023, The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021., Microb Genom, Vol: 9
Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.
Cooper E, Lound A, Atchison CJ, et al., 2023, Awareness and perceptions of Long COVID among people in the REACT programme: early insights from a pilot interview study, PLoS One, Vol: 18, ISSN: 1932-6203
BACKGROUND: Long COVID is a patient-made term describing new or persistent symptoms experienced following SARS-CoV-2 infection. The Real-time Assessment of Community Transmission-Long COVID (REACT-LC) study aims to understand variation in experiences following infection, and to identify biological, social, and environmental factors associated with Long COVID. We undertook a pilot interview study to inform the design, recruitment approach, and topic guide for the REACT-LC qualitative study. We sought to gain initial insights into the experience and attribution of new or persistent symptoms and the awareness or perceived applicability of the term Long COVID. METHODS: People were invited to REACT-LC assessment centres if they had taken part in REACT, a random community-based prevalence study, and had a documented history of SARS-CoV-2 infection. We invited people from REACT-LC assessment centres who had reported experiencing persistent symptoms for more than 12 weeks to take part in an interview. We conducted face to face and online semi-structured interviews which were transcribed and analysed using Thematic Analysis. RESULTS: We interviewed 13 participants (6 female, 7 male, median age 31). Participants reported a wide variation in both new and persistent symptoms which were often fluctuating or unpredictable in nature. Some participants were confident about the link between their persistent symptoms and COVID-19; however, others were unclear about the underlying cause of symptoms or felt that the impact of public health measures (such as lockdowns) played a role. We found differences in awareness and perceived applicability of the term Long COVID. CONCLUSION: This pilot has informed the design, recruitment approach and topic guide for our qualitative study. It offers preliminary insights into the varied experiences of people living with persistent symptoms including differences in symptom attribution and perceived applicability of the term Long COVID. This variation
Day S, Lury C, Ward H, 2023, Personalization: a new political arithmetic?, DISTINKTION-JOURNAL OF SOCIAL THEORY, ISSN: 1600-910X
O'Mahoney LL, Routen A, Gillies C, et al., 2023, The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis, EClinicalMedicine, Vol: 55, ISSN: 2589-5370
BACKGROUND: The aim of this study was to systematically synthesise the global evidence on the prevalence of persistent symptoms in a general post COVID-19 population. METHODS: A systematic literature search was conducted using multiple electronic databases (MEDLINE and The Cochrane Library, Scopus, CINAHL, and medRxiv) until January 2022. Studies with at least 100 people with confirmed or self-reported COVID-19 symptoms at ≥28 days following infection onset were included. Patient-reported outcome measures and clinical investigations were both assessed. Results were analysed descriptively, and meta-analyses were conducted to derive prevalence estimates. This study was pre-registered (PROSPERO-ID: CRD42021238247). FINDINGS: 194 studies totalling 735,006 participants were included, with five studies conducted in those <18 years of age. Most studies were conducted in Europe (n = 106) or Asia (n = 49), and the time to follow-up ranged from ≥28 days to 387 days. 122 studies reported data on hospitalised patients, 18 on non-hospitalised, and 54 on hospitalised and non-hospitalised combined (mixed). On average, at least 45% of COVID-19 survivors, regardless of hospitalisation status, went on to experience at least one unresolved symptom (mean follow-up 126 days). Fatigue was frequently reported across hospitalised (28.4%; 95% CI 24.7%-32.5%), non-hospitalised (34.8%; 95% CI 17.6%-57.2%), and mixed (25.2%; 95% CI 17.7%-34.6%) cohorts. Amongst the hospitalised cohort, abnormal CT patterns/x-rays were frequently reported (45.3%; 95% CI 35.3%-55.7%), alongside ground glass opacification (41.1%; 95% CI 25.7%-58.5%), and impaired diffusion capacity for carbon monoxide (31.7%; 95% CI 25.8%-3.2%). INTERPRETATION: Our work shows that 45% of COVID-19 survivors, regardless of hospitalisation status, were experiencing a range of unresolved symptoms at ∼ 4 months. Current understanding is limited by heterogeneous study design, follow-up durations, and me
Jefferson E, Cole C, Mumtaz S, et al., 2022, A Hybrid Architecture (CO-CONNECT) to Facilitate Rapid Discovery and Access to Data Across the United Kingdom in Response to the COVID-19 Pandemic: Development Study., J Med Internet Res, Vol: 24
BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintainin
Piggin M, Smith E, Mankone P, et al., 2022, The role of public involvement in the design of the first SARS-CoV-2 human challenge study during an evolving pandemic, Epidemics: the journal of infectious disease dynamics, Vol: 41, Pages: 1-6, ISSN: 1755-4365
High quality health care research must involve patients and the public. This ensures research is important, relevant and acceptable to those it is designed to benefit. The world’s first human challenge study with SARS-CoV-2 undertook detailed public involvement to inform study design despite the urgency to review and establish the study. The work was integral to the UK Research Ethics Committee review and approval of the study. Discussion with individuals from ethnic minorities within the UK population supported decision-making around the study exclusion criteria. Public review of study materials for consent processes led to the addition of new information, comparisons and visual aids to help volunteers consider the practicalities and risks involved in participating. A discussion exploring the acceptability of a human challenge study with SARS-CoV-2 taking place in the UK, given the current context of the pandemic, identified overall support for the study. Public concern for the wellbeing of trial participants, as a consequence of isolation, was identified. We outline our approach to public involvement and its impact on study design.
Eales O, Wang H, Haw D, et al., 2022, Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown, January to July 2021, PLoS Computational Biology, Vol: 18, Pages: 1-16, ISSN: 1553-734X
Background:Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards.Aim:We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence.Methods:On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions.Results:Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups.Conclusion:High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.
Papageorgiou V, Bruton P, Johnson H, et al., 2022, Supporting material for co-researchers
This pack has been designed to be used alongside the Peer Research Training Resource (https://doi.org/10.25561/94819) and includes:• Skills, experience, and training reviews for Advisory Group Members and Peer Researchers• Zoom Interviews: Guide for Peer Researchers• Useful COVID-19 resources for people living with HIVThe pack is suitable for academics and public involvement practitioners who are involving people with lived experience as co-researchers in research. The material presented here was developed for a participatory research study on COVID-19 experiences among people living with HIV where interviews were conducted online.
Whitaker M, Elliott J, Bodinier B, et al., 2022, Variant-specific symptoms of COVID-19 in a study of 1,542,510 adults in England, Nature Communications, Vol: 13, Pages: 1-10, ISSN: 2041-1723
Infection with SARS-CoV-2 virus is associated with a wide range of symptoms. The REal-time Assessment of Community Transmission -1 (REACT-1) study monitored the spread and clinical manifestation of SARS-CoV-2 among random samples of the population in England from 1 May 2020 to 31 March 2022. We show changing symptom profiles associated with the different variants over that period, with lower reporting of loss of sense of smell or taste for Omicron compared to previous variants, and higher reporting of cold-like and influenza-like symptoms, controlling for vaccination status. Contrary to the perception that recent variants have become successively milder, Omicron BA.2 was associated with reporting more symptoms, with greater disruption to daily activities, than BA.1. With restrictions lifted and routine testing limited in many countries, monitoring the changing symptom profiles associated with SARS-CoV-2 infection and effects on daily activities will become increasingly important.
Eales O, Haw D, Wang H, et al., 2022, Quantifying changes in the IFR and IHR over 23 months of the SARS-CoV-2 pandemic in England
<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity in England approximately monthly from May 2020 to 31 March 2022. This period covers widespread circulation of the original strain, the emergence of the Alpha, Delta and Omicron variants and the rollout of England’s mass vaccination campaign.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Here, we explore this changing relationship between prevalence of swab positivity and the infection fatality rate (IFR) and infection hospitalisation rate (IHR) over 23 months of the pandemic in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models and Bayesian P-spline models. We analyse data for all age groups together, as well as in two sub-groups: those aged 65 and over and those aged 64 and under.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late-2021/early-2022 the IFR and IHR had both decreased to 0.097% and 0.76% respectively. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta’s emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR of the virus decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late-2021/early-2022 these time-lags had decreased to 7 days for hospitalisations, and 18 days for deaths.</jats:
Chadeau-Hyam M, Tang D, Eales O, et al., 2022, Omicron SARS-CoV-2 epidemic in England during February 2022: A series of cross-sectional community surveys, The Lancet Regional Health Europe, Vol: 21, Pages: 1-11, ISSN: 2666-7762
BackgroundThe Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage.MethodsIn the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022).FindingsWe estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76–3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91–0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00–1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0–0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1047, 64.8% (62.4–67.2) were BA.1; N=568, 35.2% (32.8–37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34–0.41). The highest proportion of BA.2 among positives was found in London.InterpretationIn February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required.FundingDepartment of Health and Social Care, England.
Eales O, Ainslie KEC, Walters CE, et al., 2022, Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number, Epidemics: the journal of infectious disease dynamics, Vol: 40, ISSN: 1755-4365
The time-varying reproduction number () can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of from case data. However, these are not easily adapted to point prevalence data nor can they infer across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020–December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of over the period of two subsequent rounds (6–8 weeks) and single rounds (2–3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in over the summer of 2020 as restrictions were eased, and a reduction in during England’s second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.
Delisle TG, D'Souza N, Tan J, et al., 2022, Introduction of an integrated primary care faecal immunochemical test referral pathway for patients with suspected colorectal cancer symptoms, COLORECTAL DISEASE, Vol: 24, Pages: 1526-1534, ISSN: 1462-8910
Papageorgiou V, Crittendon E, Coukan F, et al., 2022, Impact of daily, oral pre-exposure prophylaxis on the risk of bacterial sexually transmitted infections among cisgender women: a systematic review and narrative synthesis [version 2; peer review: 2 approved], Wellcome Open Research, Vol: 7, Pages: 1-21, ISSN: 2398-502X
Background: There are concerns that the use of pre-exposure prophylaxis (PrEP) may result in an increased incidence of sexually transmitted infections (STIs). Evidence for this is mixed and has mostly been based on reviews focussed on gay and bisexual men and transgender women, while none have summarised evidence in cisgender women.Methods: We conducted a systematic review to explore whether daily, oral PrEP use is associated with changes in bacterial STI occurrence (diagnoses or self-reported) and/or risk among HIV seronegative cisgender women (ciswomen). The quality of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) tool.Results: We included 11 full text articles in a narrative synthesis, with the studies published between 2012 and 2021. The studies were mostly based in Africa (n=7, 63.6%) and reported on 3168 ciswomen using PrEP aged 16–56 years. Studies had marked differences in variables, including measurements and definitions (e.g., STI type) and limited data available looking specifically at ciswomen, principally in studies with both male and female participants. The limited evidence suggests that PrEP use is not associated with increased STI rates in ciswomen generally; however, adolescent girls and young women in Sub Saharan Africa have a higher prevalence of bacterial STIs prior to PrEP initiation, compared to adult ciswomen and female sex workers.Conclusions: We suggest future PrEP research make efforts to include ciswomen as study participants and report stratified results by gender identity to provide adequate data to inform guidelines for PrEP implementation.PROSPERO registration: CRD42019130438
Elliott P, Eales O, Bodinier B, et al., 2022, Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England, Nature Communications, Vol: 13, ISSN: 2041-1723
Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n=102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R=0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R=1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.
Papageorgiou V, Bruton P, Dsouza K, et al., 2022, Experiences of the COVID-19 epidemic: a participatory qualitative study with people living and/or working with HIV in the UK, 24th International AIDS Conference
Eales O, Martins LDO, Page AJ, et al., 2022, Dynamics of competing SARS-CoV-2 variants during the Omicron epidemic in England, Nature Communications, Vol: 13, ISSN: 2041-1723
The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant (first detected in November 2021) exhibited a high degree of immune evasion, leading to increased infection rates worldwide. However, estimates of the magnitude of this Omicron wave have often relied on routine testing data, which are prone to several biases. Using data from the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys assessing prevalence of SARS-CoV-2 infection in England, we estimated the dynamics of England’s Omicron wave (from 9 September 2021 to 1 March 2022). We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct variants, intermittent epidemics of similar magnitudes may become the ‘new normal’.
Eales O, Wang H, Bodinier B, et al., 2022, SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2, BMC Infectious Diseases, Vol: 22, ISSN: 1471-2334
Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September - 27 September 2021) and 15 (19 October - 5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month.Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI, 8%-23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England.Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.
Atchison C, Moshe M, Brown J, et al., 2022, Validity of self-testing at home with rapid SARS-CoV-2 antibody detection by lateral flow immunoassay, Publisher: medRxiv
<h4>ABSTRACT</h4> <h4>Background</h4> Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassays (LFIA) can be carried out in the home and have been used as an affordable and practical approach to large-scale antibody prevalence studies. However, assay performance differs from that of high-throughput laboratory-based assays which can be highly sensitive. We explore LFIA performance under field conditions compared to laboratory-based ELISA and assess the potential of LFIAs to identify people who lack functional antibodies following infection or vaccination. <h4>Methods</h4> Field evaluation of a self-administered LFIA test (Fortress, NI) among 3758 participants from the REal-time Assessment of Community Transmission-2 (REACT-2) study in England selected based on vaccination history and previous LFIA result to ensure a range of antibody titres. In July 2021, participants performed, at home, a self-administered LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample (Tasso-SST) for serological assessment of IgG antibodies to the spike protein using the Roche Elecsys® Anti-SARS-CoV-2 assay. We compared the self-administered and reported LFIA result to the quantitative Roche assay and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. <h4>Results</h4> Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection, with most having received one (862, 22.9%) or two (2430, 64.7%) COVID-19 vaccine doses. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on Roche anti-S (using the manufacturer reference standard threshold for positivity of 0.8 U ml -1 ). Live virus neutra
Eales O, de Oliveira Martins L, Page A, et al., 2022, Dynamics and scale of the SARS-CoV-2 variant Omicron epidemic in England, Nature Communications, ISSN: 2041-1723
Wong N, Meshkinfamfard S, Turbé V, et al., 2022, Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies, Communications Medicine, Vol: 2, ISSN: 2730-664X
Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home but rely on subjective interpretation of a test line by eye, risking false positives and negatives. Here we report the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Automated analysis showed substantial agreement with human experts (Kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false positive and false negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests, to be a tool for improved accuracy for population-level community surveillance.
Chadeau M, Tang D, Eales O, et al., 2022, Cross-sectional community surveys to monitor the Omicron SARS-CoV-2 epidemic in England during February 2022, The Lancet Regional Health Europe, ISSN: 2666-7762
Background: The Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage.Methods: In the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022).Findings: We estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76–3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91–0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00–1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0–0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1,047, 64.8% (62.4–67.2) were BA.1; N=568, 35.2% (32.8–37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34–0.41). The highest proportion of BA.2 among positives was found in London. Interpretation: In February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required.Funding Department of Health and Social Care, England.
Eales O, Wang H, Haw D, et al., 2022, Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown, January to July 2021
<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards.</jats:p></jats:sec><jats:sec><jats:title>Aim</jats:title><jats:p>We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (<jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub>) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on <jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub> of each relaxation of restrictions.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number <jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub> incre
Papageorgiou V, Davies B, Cooper E, et al., 2022, Influence of material deprivation on clinical outcomes among people living with HIV in high-income countries: a systematic review and meta-analysis, AIDS and Behavior, Vol: 26, Pages: 2026-2054, ISSN: 1090-7165
Despite developments in HIV treatment and care, disparities persist with some not fully benefiting from improvements in the HIV care continuum. We conducted a systematic review to explore associations between social determinants and HIV treatment outcomes (viral suppression and treatment adherence) in high-income countries. A random effects meta-analysis was performed where there were consistent measurements of exposures. We identified 83 observational studies eligible for inclusion. Social determinants linked to material deprivation were identified as education, employment, food security, housing, income, poverty/deprivation, socioeconomic status/position, and social class; however, their measurement and definition varied across studies. Our review suggests a social gradient of health persists in the HIV care continuum; people living with HIV who reported material deprivation were less likely to be virologically suppressed or adherent to antiretrovirals. Future research should use an ecosocial approach to explore these interactions across the lifecourse to help propose a causal pathway.
Chadeau M, Eales O, Bodinier B, et al., 2022, Breakthrough SARS-CoV-2 infections in double and triple vaccinated adults and single dose vaccine effectiveness among children in Autumn 2021 in England: REACT-1 study, EClinicalMedicine, Vol: 48, Pages: 1-14, ISSN: 2589-5370
Background: Prevalence of SARS-CoV-2 infection with Delta variant was increasing in England in late summer 2021 among children aged 5 to 17 years, and adults who had received two vaccine doses. In September 2021, a third (booster) dose was offered to vaccinated adults aged 50 years and over, vulnerable adults and healthcare/care-home workers, and a single vaccine dose already offered to 16 and 17 year-olds was extended to children aged 12 to 15 years. Methods: SARS-CoV-2 community prevalence in England was available from self-administered throat and nose swabs using reverse transcriptase polymerase chain reaction (RT-PCR) in round 13 (24 June to 12 July 2021, N= 98,233), round 14 (9 to 27 September 2021, N = 100,527) and round 15 (19 October to 5 November 2021, N = 100,112) from the REACT-1 study randomised community surveys. Linking to National Health Service (NHS) vaccination data for consenting participants, we estimated vaccine effectiveness in children aged 12 to 17 years and compared swab-positivity rates in adults who received a third dose with those who received two doses. Findings: Weighted SARS-CoV-2 prevalence was 1.57% (1.48%, 1.66%) in round 15 compared with 0.83% (0.76%, 0.89%) in round 14, and the previously observed link between infections and hospitalisations and deaths had weakened. Vaccine effectiveness against infection in children aged 12 to 17 years was estimated (round 15) at 64.0% (50.9%, 70.6%) and 67.7% (53.8%, 77.5%) for symptomatic infections. Adults who received a third vaccine dose were less likely to test positive compared to those who received two doses, with adjusted odds ratio of 0.36 (0.25, 0.53). Interpretation: Vaccination of children aged 12 to 17 years and third (booster) doses in adults were effective at reducing infection risk. High rates of vaccination, including booster doses, are a key part of the strategy to reduce infection rates in the community.
Cann A, Clarke C, Brown J, et al., 2022, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow assay for antibody prevalence studies following vaccination: a diagnostic accuracy study [version 2; peer review: 2 approved], Wellcome Open Research, Vol: 6, ISSN: 2398-502X
Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.