Imperial College London

Dr Hannah M Cheeseman

Faculty of MedicineDepartment of Infectious Disease

Postdoctoral Researcher & Clinical Trials Laboratory Manager
 
 
 
//

Contact

 

+44 (0)20 7594 2540hannah.cheeseman

 
 
//

Location

 

457 - Shattock GroupNorfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

20 results found

Moshe M, Daunt A, Flower B, Simmons B, Brown JC, Frise R, Penn R, Kugathasan R, Petersen C, Stockmann H, Ashby D, Riley S, Atchison C, Taylor GP, Satkunarajah S, Naar L, Klaber R, Badhan A, Rosadas C, Marchesin F, Fernandez N, Sureda-Vives M, Cheeseman H, O'Hara J, Shattock R, Fontana G, Pallett SJC, Rayment M, Jones R, Moore LSP, Ashrafian H, Cherapanov P, Tedder R, McClure M, Ward H, Darzi A, Cooke GS, Barclay WS, On behalf of the REACT Study teamet al., 2021, SARS-CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence surveys (REACT2): diagnostic accuracy study, BMJ: British Medical Journal, Vol: 372, Pages: 1-8, ISSN: 0959-535X

Objective: To evaluate the performance of new lateral flow immunoassays (LFIAs) suitable for use in a national COVID-19 seroprevalence programme (REACT2).Design: Laboratory sensitivity and specificity analyses were performed for seven LFIAs on a minimum of 200 sera from individuals with confirmed SARS-CoV-2 infection, and 500 pre-pandemic sera respectively. Three LFIAs were found to have a laboratory sensitivity superior to the finger-prick sensitivity of the LFIA currently used in REACT2 seroprevalence studies (84%). These LFIAs were then further evaluated through finger-prick testing on participants with confirmed previous SARS-CoV-2 infection. Two LFIAs (Surescreen, Panbio) were evaluated in clinics in June-July, 2020, and a third LFIA (AbC-19) in September, 2020. A Spike protein enzyme-linked immunoassay (S-ELISA) and hybrid double antigen binding assay (DABA) were used as laboratory reference standards.Setting: Laboratory analyses were performed at Imperial College, London and University facilities in London, UK. Research clinics for finger-prick sampling were run in two affiliated NHS trusts.Participants: Sensitivity analysis on sera were performed on 320 stored samples from previous participants in the REACT2 programme with confirmed previous SARS-CoV-2 infection. Specificity analysis was performed using 1000 pre-pandemic sera. 100 new participants with confirmed previous SARS-CoV-2 infection attended study clinics for finger-prick testing.Main outcome measures: The accuracy of LFIAs in detecting IgG antibodies to SARS-CoV-2 in comparison to two in-house ELISAs.Results: The sensitivity of seven new LFIAs using sera varied between 69% and 100% (vs S-ELISA/hybrid DABA). Specificity using sera varied between 99.6% and 100%. Sensitivity on finger-prick testing for Panbio, Surescreen and AbC-19 was 77% (CI 61.4 to 88.2), 86% (CI 72.7 to 94.8) and 69% (CI 53.8 to 81.3) respectively vs S-ELISA/hybrid DABA. Sensitivity for sera from matched clinical samples performe

Journal article

Klein K, Nankya I, Nickel G, Ratcliff AN, Meadows AAJ, Hathaway N, Bailey JA, Stith DJ, Cheeseman HM, Carias AM, Lobritz MA, Mann JFS, Gao Y, Hope TJ, Shattock RJ, Arts EJet al., 2021, Deep Gene Sequence Cluster Analyses of Multi-Virus-Infected Mucosal Tissue Reveal Enhanced Transmission of Acute HIV-1, JOURNAL OF VIROLOGY, Vol: 95, ISSN: 0022-538X

Journal article

Tregoning JS, Brown ES, Cheeseman HM, Flight KE, Higham SL, Lemm N-M, Pierce BF, Stirling DC, Wang Z, Pollock KMet al., 2020, Vaccines for COVID-19, Clinical and Experimental Immunology, Vol: 202, Pages: 162-192, ISSN: 0009-9104

Since the emergence of COVID-19, caused by the SARS-CoV-2 virus, at the end of 2019 there has been an explosion of vaccine development. By the 1st September 2020, a staggering number of vaccines (over 200) had started pre-clinical development of which 39 had entered clinical trials, including some approaches that have not previously been licensed for human vaccines. Vaccines have been widely considered as part of the exit strategy to enable the return to previous patterns of working, schooling and socialising. Importantly, to effectively control the COVID-19 pandemic, production needs to be scaled up from a small number of pre-clinical doses to enough filled vials to immunise the world's population, which requires close engagement with manufacturers and regulators. It will require a global effort to control the virus, necessitating equitable access for all countries to effective vaccines. This review explores the immune responses required to protect against SARS-CoV-2 and the potential for vaccine-induced immunopathology. It describes the profile of the different platforms and the advantages and disadvantages of each approach. The review also addresses the critical steps between promising pre-clinical leads and manufacturing at scale. The issues faced during this pandemic and the platforms being developed to address it will be invaluable for future outbreak control. Nine months after the outbreak began, we are at a point where pre-clinical and early clinical data is being generated for the vaccines, an overview of this important area will help our understanding of the next phases.

Journal article

Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, Kugathasan R, Petersen C, Daunt A, Ashby D, Riley S, Atchison C, Taylor GP, Satkunarajah S, Naar L, Klaber R, Badhan A, Rosadas C, Kahn M, Fernandez N, Sureda-Vives M, Cheeseman H, O'Hara J, Fontana G, Pallett SJC, Rayment M, Jones R, Moore LSP, Cherapanov P, Tedder R, McClure M, Ashrafian H, Shattock R, Ward H, Darzi A, Elliott P, Barclay W, Cooke Get al., 2020, Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 sero-prevalence survey, Thorax, Vol: 75, Pages: 1082-1088, ISSN: 0040-6376

BackgroundAccurate antibody tests are essential to monitor the SARS-CoV-2 pandemic. Lateral flow immunoassays (LFIAs) can deliver testing at scale. However, reported performance varies, and sensitivity analyses have generally been conducted on serum from hospitalised patients. For use in community testing, evaluation of finger-prick self-tests, in non-hospitalised individuals, is required.MethodsSensitivity analysis was conducted on 276 non-hospitalised participants. All had tested positive for SARS-CoV-2 by RT-PCR and were ≥21d from symptom-onset. In phase I we evaluated five LFIAs in clinic (with finger-prick) and laboratory (with blood and sera) in comparison to a) PCR-confirmed infection and b) presence of SARS-CoV-2 antibodies on two “in-house” ELISAs. Specificity analysis was performed on 500 pre-pandemic sera. In phase II, six additional LFIAs were assessed with serum.Findings95% (95%CI [92.2, 97.3]) of the infected cohort had detectable antibodies on at least one ELISA. LFIA sensitivity was variable, but significantly inferior to ELISA in 8/11 assessed. Of LFIAs assessed in both clinic and laboratory, finger-prick self-test sensitivity varied from 21%-92% vs PCR-confirmed cases and 22%-96% vs composite ELISA positives. Concordance between finger-prick and serum testing was at best moderate (kappa 0.56) and, at worst, slight (kappa 0.13). All LFIAs had high specificity (97.2% - 99.8%).InterpretationLFIA sensitivity and sample concordance is variable, highlighting the importance of evaluations in setting of intended use. This rigorous approach to LFIA evaluation identified a test with high specificity (98.6% (95%CI [97.1, 99.4])), moderate sensitivity (84.4% with fingerprick (95%CI [70.5, 93.5])), and moderate concordance, suitable for seroprevalence surveys.

Journal article

Abraham S, Juel HB, Bang P, Cheeseman HM, Dohn RB, Cole T, Kristiansen MP, Korsholm KS, Lewis D, Olsen AW, McFarlane LR, Day S, Knudsen S, Moen K, Ruhwald M, Kromann I, Andersen P, Shattock RJ, Follmann Fet al., 2019, Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial, Lancet Infectious Diseases, Vol: 19, Pages: 1091-1100, ISSN: 1473-3099

BACKGROUND: Chlamydia is the most common sexually transmitted bacterial infection worldwide. National screening programmes and antibiotic treatment have failed to decrease incidence, and to date no vaccines against genital chlamydia have been tested in clinical trials. We aimed to assess the safety and immunogenicity, in humans, of a novel chlamydia vaccine based on a recombinant protein subunit (CTH522) in a prime-boost immunisation schedule. METHODS: This phase 1, first-in-human, double-blind, parallel, randomised, placebo-controlled trial was done at Hammersmith Hospital in London, UK, in healthy women aged 19-45 years. Participants were randomly assigned (3:3:1) to three groups: CTH522 adjuvanted with CAF01 liposomes (CTH522:CAF01), CTH522 adjuvanted with aluminium hydroxide (CTH522:AH), or placebo (saline). Participants received three intramuscular injections of 85 μg vaccine (with adjuvant) or placebo to the deltoid region of the arm at 0, 1, and 4 months, followed by two intranasal administrations of 30 μg unadjuvanted vaccine or placebo (one in each nostril) at months 4·5 and 5·0. The primary outcome was safety and the secondary outcome was humoral immunogenicity (anti-CTH522 IgG seroconversion). This study is registered with Clinicaltrials.gov, number NCT02787109. FINDINGS: Between Aug 15, 2016, and Feb 13, 2017, 35 women were randomly assigned (15 to CTH522:CAF01, 15 to CTH522:AH, and five to placebo). 32 (91%) received all five vaccinations and all participants were included in the intention-to-treat analyses. No related serious adverse reactions were reported, and the most frequent adverse events were mild local injection-site reactions, which were reported in all (15 [100%] of 15) participants in the two vaccine groups and in three (60%) of five participants in the placebo group (p=0·0526 for both comparisons). Intranasal vaccination was not associated with a higher frequency of related local reactions (reported in seven [47%]

Journal article

Cheeseman HM, Day S, McFarlane LR, Fleck S, Miller A, Cole T, Sousa-Santos N, Cope A, Cizmeci D, Tolazzi M, Hwekwete E, Hannaman D, Kratochvil S, McKay PF, Chung AW, Kent SJ, Cook A, Scarlatti G, Abraham S, Combadiere B, McCormack S, Lewis DJ, Shattock RJet al., 2018, Combined Skin and Muscle DNA Priming Provides Enhanced Humoral Responses to a Human Immunodeficency Virus Type 1 Clade C Envelope Vaccine, Human Gene Therapy, Vol: 29, Pages: 1011-1028, ISSN: 1043-0342

© Copyright 2018, Mary Ann Liebert, Inc., publishers2018. Intradermal (i.d.) and intramuscular (i.m.) injections when administered with or without electroporation (EP) have the potential to tailor the immune response to DNA vaccination. This Phase I randomized controlled clinical trial in human immunodeficiency virus type 1-negative volunteers investigated whether the site and mode of DNA vaccination influences the quality of induced cellular and humoral immune responses following the DNA priming phase and subsequent protein boost with recombinant clade C CN54 gp140. A strategy of concurrent i.d. and i.m. DNA immunizations administered with or without EP was adopted. Subtle differences were observed in the shaping of vaccine-induced virus-specific CD4+ and CD8+ T cell-mediated immune responses between groups receiving: i.d.EP+ i.m., i.d. + i.m.EP, and i.d.EP+ i.m.EPregimens. The DNA priming phase induced 100% seroconversion in all of the groups. A single, non-adjuvanted protein boost induced a rapid and profound increase in binding antibodies in all groups, with a trend for higher responses in i.d.EP+ i.m.EP. The magnitude of antigen-specific binding immunoglobulin G correlated with neutralization of closely matched clade C 93MW965 virus and Fc-dimer receptor binding (FcγRIIa and FcγRIIIa). These results offer new perspectives on the use of combined skin and muscle DNA immunization in priming humoral and cellular responses to recombinant protein.

Journal article

Kinnear E, Lambert L, McDonald JU, Cheeseman HM, Caproni LJ, Tregoning JSet al., 2017, Corrigendum: Airway T cells protect against RSV infection in the absence of antibody, Mucosal Immunology, Vol: 11, Pages: 290-290, ISSN: 1933-0219

Correction to:Mucosal Immunology(2018)11,249–256; doi:10.1038/mi.2017.46; published online 24 May 2017

Journal article

Kinnear E, Lambert L, McDonald JU, Cheeseman HM, Caproni LJ, Tregoning JSet al., 2017, Airway T cells protect against RSV infection in the absence of antibody, Mucosal Immunology, Vol: 11, Pages: 249-256, ISSN: 1933-0219

Tissue resident memory T (Trm) cells act as sentinels and early responders to infection. Respiratory syncytial virus (RSV)-specific Trm cells have been detected in the lungs after human RSV infection, but whether they have a protective role is unknown. To dissect the protective function of Trm cells, BALB/c mice were infected with RSV; infected mice developed antigen-specific CD8(+) Trm cells (CD103(+)/CD69(+)) in the lungs and airways. Intranasally transferring cells from the airways of previously infected animals to naïve animals reduced weight loss on infection in the recipient mice. Transfer of airway CD8 cells led to reduced disease and viral load and increased interferon-γ in the airways of recipient mice, while CD4 transfer reduced tumor necrosis factor-α in the airways. Because DNA vaccines induce a systemic T-cell response, we compared vaccination with infection for the effect of memory CD8 cells generated in different compartments. Intramuscular DNA immunization induced RSV-specific CD8 T cells, but they were immunopathogenic and not protective. Notably, there was a marked difference in the induction of Trm cells; infection but not immunization induced antigen-specific Trm cells in a range of tissues. These findings demonstrate a protective role for airway CD8 against RSV and support the need for vaccines to induce antigen-specific airway cells.Mucosal Immunology advance online publication, 24 May 2017; doi:10.1038/mi.2017.46.

Journal article

Arakelyan A, Fitzgerald W, King DF, Rogers P, Cheeseman HM, Grivel J-C, Shattock RJ, Margolis Let al., 2017, Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions, Scientific Reports, Vol: 7, ISSN: 2045-2322

HIV-1 envelope proteins (Envs) play a critical role in HIV infection. In a correct trimeric conformation, Env mediates virus–cell binding and fusion. Malfunctioning of this machinery renders virions incapable of infecting cells. Each HIV-1 virion carries 10–14 Envs, and therefore a defective Env may not necessarily render a HIV virion non-infectious, since other Env on the same virion may still be functional. Alternatively, it is possible that on a given virion either all the spikes are defective or all are functional. Here, we investigate Env conformations on individual virions using our new nanotechnology, “flow virometry”, and a panel of antibodies that discriminate between various Env conformations. We found that the majority of HIV-1 virions carry either only trimeric (“functional”) or only defective spikes. The relatively small subfraction of virions that carry both functional and nonfunctional Envs contributes little to HIV infection of human lymphoid tissue ex vivo. The observation that the majority of virions exclusively express either functional or nonfunctional forms of Env has important implications for understanding the role of neutralizing and non-neutralizing antibodies in the immune control of HIV infection as well as for the development of effective prophylactic strategies.

Journal article

Cheeseman HM, Olejniczak NJ, Rogers PM, Evans AB, King DFL, Ziprin P, Liao H-X, Haynes BF, Shattock RJet al., 2016, Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies, Journal of Virology, Vol: 91, ISSN: 1098-5514

Definition of the key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal tissue may prove critical to effective vaccine development and the prophylactic use of monoclonal antibodies. Although direct antibody-mediated neutralization is highly effective against cell-free virus, antibodies targeting different sites of envelope vulnerability may display differential activity against mucosal infection. Nonneutralizing antibodies (nnAbs) may also impact mucosal transmission events through Fc-gamma receptor (FcγR)-mediated inhibition. In this study, a panel of broadly neutralizing antibodies (bnAbs) and nnAbs, including those associated with protection in the RV144 vaccine trial, were screened for the ability to block HIV-1 acquisition and replication across a range of cellular and mucosal tissue models. Neutralization potency, as determined by the TZM-bl infection assay, did not fully predict activity in mucosal tissue. CD4-binding site (CD4bs)-specific bnAbs, in particular VRC01, were consistent in blocking HIV-1 infection across all cellular and tissue models. Membrane-proximal external region (MPER) (2F5) and outer domain glycan (2G12) bnAbs were also efficient in preventing infection of mucosal tissues, while the protective efficacy of bnAbs targeting V1-V2 glycans (PG9 and PG16) was more variable. In contrast, nnAbs alone and in combinations, while active in a range of cellular assays, were poorly protective against HIV-1 infection of mucosal tissues. These data suggest that tissue resident effector cell numbers and low FcγR expression may limit the potential of nnAbs to prevent establishment of the initial foci of infection. The solid protection provided by specific bnAbs clearly demonstrates their superior potential over that of nonneutralizing antibodies for preventing HIV-1 infection at the mucosal portals of infection.IMPORTANCE Key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal

Journal article

Cheeseman HM, Carias AM, Evans AB, Olejniczak NJ, Ziprin P, King DF, Hope TJ, Shattock RJet al., 2016, Expression profile of human Fc receptors in mucosal tissue: implications for antibody-dependent cellular effector functions targeting HIV-1 transmission, PLOS One, Vol: 11, ISSN: 1932-6203

The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the ini

Journal article

Kopycinski J, Hayes P, Ashraf A, Cheeseman H, Lala F, Czyzewska-Khan J, Spentzou A, Gill DK, Keefer MC, Excler J-L, Fast P, Cox J, Gilmour Jet al., 2014, Broad HIV Epitope Specificity and Viral Inhibition Induced by Multigenic HIV-1 Adenovirus Subtype 35 Vector Vaccine in Healthy Uninfected Adults, PLOS ONE, Vol: 9, ISSN: 1932-6203

Journal article

Hayes P, Gilmour J, von Lieven A, Gill D, Clark L, Kopycinski J, Cheeseman H, Chung A, Alter G, Dally L, Zachariah D, Lombardo A, Ackland J, Sayeed E, Jackson A, Boffito M, Gazzard B, Fast PE, Cox JH, Laufer Det al., 2013, Safety and immunogenicity of DNA prime and modified vaccinia ankara virus-HIV subtype C vaccine boost in healthy adults., Clin Vaccine Immunol, Vol: 20, Pages: 397-408

A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-γ ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4(+) phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A.

Journal article

Kopycinski J, Cheeseman H, Ashraf A, Gill D, Hayes P, Hannaman D, Gilmour J, Cox JH, Vasan Set al., 2012, A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers., Clin Vaccine Immunol, Vol: 19, Pages: 1557-1559

Administration of a clade C/B' candidate HIV-1 DNA vaccine, ADVAX, by in vivo electroporation (EP) was safe and more immunogenic than intramuscular administration without EP. The breadth and specificity of T-cell responses to full-length Env were mapped. Responses to multiple Env regions were induced, with most focusing on V3/C4 and V2 regions, including the α4β7 integrin-binding domain. The breadth of responses induced by this DNA vaccine regimen was comparable to that of viral-vectored vaccine regimens.

Journal article

Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, Bunce CA, Hay CM, Welsh S, Komaroff W, Hachaambwa L, Tarragona-Fiol T, Sayeed E, Zachariah D, Ackland J, Loughran K, Barin B, Cormier E, Cox JH, Fast P, Excler J-Let al., 2012, A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults., PLoS One, Vol: 7

BACKGROUND: We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. METHODS: Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×10(9) (A), 2×10(10) (B), 2×10(11) (C), or Ad35-GRIN 1×10(10) (D) viral particles. RESULTS: No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A-D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 10(6) PBMC to any antigen was 78-139 across Groups A-C and 158-174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A-C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. CONCLUSION/SIGNIFICANCE: Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased

Journal article

Kaltsidis H, Cheeseman H, Kopycinski J, Ashraf A, Cox MC, Clark L, Anjarwalla I, Dally L, Bergin P, Spentzou A, Higgs C, Gotch F, Gazzard B, Gomez R, Hayes P, Kelleher P, Gill DK, Gilmour Jet al., 2011, Measuring human T cell responses in blood and gut samples using qualified methods suitable for evaluation of HIV vaccine candidates in clinical trials., J Immunol Methods, Vol: 370, Pages: 43-54

The next generation of candidate HIV vaccines include replicating vectors selected for tropism to mucosal sites, where an efficacious T cell response will be required to limit T cell replication and HIV associated CD4 T cell loss. To fully assess immunogenicity of such candidates, there is a need to develop robust quality controlled analysis of gut derived HIV specific CD8+ T-cell responses. Despite obvious challenges in obtaining sufficient amounts of tissue, the highly compartmentalised nature of the mucosal immune responses, requires the assessment of CD8 T cells isolated directly from local tissue before any conclusions regarding the induction of mucosal responses are made. Here we describe the optimisation and subsequent qualification of a qualitative and quantitative polychromatic flow cytometry assay to assess antigen specific CD8+ T cells isolated from the gut, using samples from HIV positive and negative volunteers. Internal quality controls monitored over time, combined with the use of quality gating and standard operating procedures were used to demonstrate the generation of robust and reliable data.

Journal article

Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, Boente-Carrera M, Vittorino R, Caskey M, Andersen J, Huang Y, Cox JH, Tarragona-Fiol T, Gill DK, Cheeseman H, Clark L, Dally L, Smith C, Schmidt C, Park HH, Kopycinski JT, Gilmour J, Fast P, Bernard R, Ho DDet al., 2011, In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers., PLoS One, Vol: 6

BACKGROUND: DNA-based vaccines have been safe but weakly immunogenic in humans to date. METHODS AND FINDINGS: We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines. CONCLUSIONS: This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate. TRIAL REGISTRATION: ClinicalTrials.gov NCT00545987.

Journal article

Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, Boente-Carrera M, Vittorino R, Caskey M, Andersen J, Huang Y, Cox JH, Tarragona-Fiol T, Gill DK, Cheeseman H, Clark L, Dally L, Smith C, Schmidt C, Park HH, Kopycinski JT, Gilmour J, Fast P, Bernard R, Ho DDet al., 2011, In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers, PLoS One, Vol: 6, ISSN: 1932-6203

Journal article

Spentzou A, Bergin P, Gill D, Cheeseman H, Ashraf A, Kaltsidis H, Cashin-Cox M, Anjarwalla I, Steel A, Higgs C, Pozniak A, Piechocka-Trocha A, Wong J, Anzala O, Karita E, Dally L, Gotch F, Walker B, Gilmour J, Hayes Pet al., 2010, Viral inhibition assay: a CD8 T cell neutralization assay for use in clinical trials of HIV-1 vaccine candidates., J Infect Dis, Vol: 201, Pages: 720-729

We have characterized an assay measuring CD8 T cell-mediated inhibition of human immunodeficiency virus (HIV) type 1 replication, demonstrating specificity and reproducibility and employing a panel of primary HIV-1 isolates. The assay uses relatively simple autologous cell culture and enzyme-linked immunosorbent assay, avoids generation of T cell clones, and can be performed with <2 million peripheral blood mononuclear cells. Efficient CD8 T cell-mediated cross-clade inhibition of HIV-1 replication in vitro was demonstrated in antiretroviral therapy-naive HIV-1-infected subjects with controlled viral replication in vivo but not in viremic subjects. An HIV-1 vaccine candidate, consisting of DNA and recombinant adenovirus 5 vectors tested in a phase I clinical trial, induced CD8 T cells that efficiently inhibited HIV-1 in a HLA-I-dependent manner. Assessment of direct antiviral T cell function by this assay provides additional information to guide vaccine design and the prioritizing of candidates for further clinical trials.

Journal article

Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, Boente-Carrera MM, Vittorino RM, Caskey M, Andersen J, Huang Y, Cox J, Tarragona T, Gill DK, Cheeseman H, Clark L, Dally L, Smith C, Schmidt C, Park H, Sayeed E, Gilmour J, Fast P, Bernard R, Ho DDet al., 2009, OA05-01. In vivo electroporation enhances the immunogenicity of ADVAX, a DNA-based HIV-1 vaccine candidate, in healthy volunteers, Retrovirology, Vol: 6

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00331359&limit=30&person=true