Imperial College London

Dr Hong S. Wong

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Reader in Structures and Materials



+44 (0)20 7594 5956hong.wong Website




Ms Ruth Bello +44 (0)20 7594 6040




228DSkempton BuildingSouth Kensington Campus





My research lies in the area of microstructure, mass transport and durability of cementitious materials. The aim is to develop more sustainable concrete structures by understanding how microstructure influences macroscopic properties. Key questions that drive my work are: a) How to quantify the inherently complex, multiscale and multiphase microstructure? b) How do pores, cracks, interfaces and phase assemblage influence mass transport and deterioration processes? c) How to assess current performance and predict long-term behaviour from microstructure? d) How to re-engineer the microstructure to design novel materials with enhanced performance?

Examples of recent research include developing three-dimensional imaging and quantitative analysis of microstructure, understanding the effects of poresmicrocracks and interfacesmodelling transport from microstructure and petrographic assessment of concrete composition and water/cement ratio. More recently, I have worked on developing supplementary cementitious materials from excavated waste clay, limestone calcined clay cementreinforcement spacersself-healing concrete, epoxy polymer concrete, hydrophobic concrete, and clogging-resistant permeable concrete.

Within the Department of Civil & Environmental Engineering, I am the Undergraduate Year 2 Coordinator, Course Director for the Advanced Materials for Sustainable Materials MSc programme and Laboratory Director for the Centre for Infrastructure Materials. I teach modules on Materials, Cementitious Materials, Concrete Materials, Structural Mechanics, and was the recipient of the 2017 CivSoc Student Choice Award for Best Lecturer.

Other activities

I am a Fellow of the Concrete SocietyInstitute of Concrete Technology and the Institute of Materials, Minerals & Mining. I sit in the Editorial Boards of Cement and Concrete Research, Advances in Cement ResearchInfrastructures and Sustainable Cement-Based Materials, and was Guest Editor for Materials on its special issue: Image Analysis and Processing for Cement-based Materials. Other contributions include Steering and Scientific Committee membership of Innovandi, the global cement and concrete research network, and as Chair of the Scientific Committee and Steering Committee member of Nanocem

I serve in the Executive Committee of Applied Petrography Group, an industry-led group on the use of petrographic methods for construction materials, and contributed to the development of BS 1881-211:2016 on petrographic examination of hardened concrete. I am also involved in the APG inter-laboratory trial on microscopy techniques for determining water/cement ratio in hardened concrete, the RILEM TC 262-SCI on steel-concrete interface, and RILEM TC 286-GDP on gas diffusion in porous media. I am a consultant on a range of industry projects linked to my research thru Imperial Consultants (ICON) and contribute to commercialising our innovative clogging resistant permeable concrete (patent WO2020099868) through the spin-out company Permia which I co-founded with Dr Alalea Kia, Professor Chris Cheeseman and Professor David Balmforth.


Growing up in Kuala Lumpur, I was trained as a civil engineer at the University of Malaya, gaining a first-class honours degree followed by a research MSc on calcined clay for high-performance concrete. I then completed a PhD in quantitative backscattered electron microscopy for characterising concrete microstructure at Imperial. My thesis was awarded the W.C. Unwin prize. Following that, I was a Research Associate on modelling mass transport processes using the techniques developed during my doctoral studies and was appointed as academic staff in 2010. When not working, I am busy raising two hyperactive kids. As an amateur blues-rock guitarist, I am always keen to link with other musicians when I can find the time! 


Scopus | Scholar | ORCiDResearchGate | Publons


Microstructure characterisation, concrete petrography, image analysis, durability of concrete structures, mass transport properties, modelling properties from microstructure.

Selected Publications

Journal Articles

Wu Z, Wong HS, Buenfeld NR, 2017, Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking, Cement and Concrete Research, Vol:98, ISSN:0008-8846, Pages:136-154

Alzyoud S, Wong HS, Buenfeld NR, 2016, Influence of reinforcement spacers on mass transport properties and durability of concrete structures, Cement and Concrete Research, Vol:87, ISSN:1873-3948, Pages:31-44

Abyaneh SD, Wong HS, Buenfeld NR, 2016, Simulating the effect of microcracks on the diffusivity and permeability of concrete using a three-dimensional model, Computational Materials Science, Vol:119, ISSN:0927-0256, Pages:130-143

Lee HXD, Wong HS, Buenfeld NR, 2016, Self-sealing of cracks in concrete using superabsorbent polymers, Cement and Concrete Research, Vol:79, ISSN:1873-3948, Pages:194-208

Yio MHN, Mac MJ, Wong HS, et al., 2015, 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning, Journal of Microscopy, Vol:258, ISSN:0022-2720, Pages:151-169

Wu Z, Wong HS, Buenfeld NR, 2015, Influence of drying-induced microcracking and related size effects on mass transport properties of concrete, Cement and Concrete Research, Vol:68, ISSN:0008-8846, Pages:35-48

Wong HS, Barakat R, Alhilali A, et al., 2015, Hydrophobic concrete using waste paper sludge ash, Cement and Concrete Research, Vol:70, ISSN:1873-3948, Pages:9-20

Abyaneh SD, Wong HS, Buenfeld NR, 2014, Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach, Computational Materials Science, Vol:87, ISSN:0927-0256, Pages:54-64

Yio MHN, Phelan JC, Wong HS, et al., 2014, Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes, Cement and Concrete Research, Vol:56, ISSN:0008-8846, Pages:171-181

Dehghanpoor Abyaneh S, Wong HS, Buenfeld NR, 2013, Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes, Computational Materials Science, Vol:78, ISSN:0927-0256, Pages:63-73

Wong HS, Buenfeld NR, Matter K, 2013, Estimating the original cement content and water-cement ratio of Portland cement concrete and mortar using backscattered electron microscopy, Magazine of Concrete Research, Vol:65, ISSN:0024-9831, Pages:693-706

Wong HS, Zimmerman RW, Buenfeld NR, 2012, Estimating the permeability of cement pastes and mortars using image analysis and effective medium theory, Cem. Concr. Res., Vol:42, Pages:476-483

More Publications