Imperial College London

DrIvanGarcia Kerdan

Faculty of EngineeringDepartment of Chemical Engineering

 
 
 
//

Contact

 

i.garcia-kerdan CV

 
 
//

Location

 

509Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

35 results found

Rojas Obregón A, De Kerpel Ramírez A, Giarola S, García Kerdan Iet al., 2023, The role of hydrogen in a decarbonised future transport sector: A case study of Mexico, Energy Reports, Vol: 9, Pages: 26-31

In recent years, several approaches and pathways have been discussed to decarbonise the transport sector; however, any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico, the transport sector is the highest energy consumer, representing 38.9% of the national final energy demand, with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs, emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario, results show potential deployment of hydrogen-based transport technologies, especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050), while cars and buses tend to full electrification by 2050.

Journal article

Contreras Fregoso JA, Tremari Romero F, Carbonell Peláez M, Giarola S, García Kerdan Iet al., 2023, Modelling large-scale hydrogen uptake in the Mexican refinery and power sectors, Energy Reports, Vol: 9, Pages: 48-53

Due to the emissions reduction commitments that Mexico compromised in the Paris Agreement, several clean fuel and renewable energy technologies need to penetrate the market to accomplish the environmental goals. Therefore, there is a need to develop achievable and realistic policies for such technologies to ease the decision-making on national energy strategies. Several countries are starting to develop large-scale green hydrogen production projects to reduce the carbon footprint of the multiple sectors within the country. The conversion sectors, namely power and refinery, are fundamental sectors to decarbonise due to their energy supply role. Nowadays, the highest energy consumables of the country are hydrocarbons (more than 90%) causing a particular challenge for deep decarbonisation. The purpose of this study is to use a multi-regional energy system model of Mexico to analyse a decarbonisation scenario in line with the latest National Energy System Development Program. Results show that if the country wants to succeed in reducing 22% of its GHG emissions and 51% of its short-lived climate pollutants emissions, green hydrogen could play a role in power generation in regions with higher energy demand growth rates. These results show, regarding the power sector, that H2 could represent 13.8 GW or 5.1% of the total installed capacity by 2050, while for the refinery sector H2 could reach a capacity of 157 PJ/y, which is around 31.8% of the total share, and it is mainly driven by the increasing demands of the transport, industry, and power sectors. Nevertheless, as oil would still represent the largest energy commodity, CCS technologies would have to be deployed for new and retrofitted refinery facilities.

Journal article

Rodriguez AT, Galvez DM, Kerdan IG, Casarin RSet al., 2023, A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM, ENERGIES, Vol: 16

Journal article

Garcia Kerdan I, Morillon Galvez D, 2022, ANNEXE: An open-source building energy design optimisation framework using artificial neural networks and genetic algorithms, JOURNAL OF CLEANER PRODUCTION, Vol: 371, ISSN: 0959-6526

Journal article

Morillon Galvez D, Garcia Kerdan I, Carmona-Paredes G, 2022, Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops, ENERGIES, Vol: 15

Journal article

Luisa Del Prado-Audelo M, Alberto Bernal-Chavez S, Celeste Gutierrez-Ruiz S, Hernandez-Parra H, Garcia Kerdan I, Manuel Reyna-Gonzalez J, Sharifi-Rad J, Leyva-Gomez Get al., 2022, Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides, OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, Vol: 2022, ISSN: 1942-0900

Journal article

Del Prado-Audelo ML, Garcia Kerdan I, Escutia-Guadarrama L, Reyna-Gonzalez JM, Magana JJ, Leyva-Gomez Get al., 2021, Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup, FRONTIERS IN ENVIRONMENTAL SCIENCE, Vol: 9

Journal article

Balcombe P, Staffell I, Kerdan IG, Speirs JF, Brandon NP, Hawkes ADet al., 2021, How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis, Energy, Vol: 227, Pages: 1-12, ISSN: 0360-5442

International shipping faces strong challenges with new legally binding air quality regulations and a 50% decarbonisation target by 2050. Liquefied natural gas (LNG) is a widely used alternative to liquid fossil fuels, but methane emissions reduce its overall climate benefit. This study utilises new emissions measurements and supply-chain data to conduct a comprehensive environmental life cycle and cost assessment of LNG as a shipping fuel, compared to heavy fuel oil (HFO), marine diesel oil (MDO), methanol and prospective renewable fuels (hydrogen, ammonia, biogas and biomethanol). LNG gives improved air quality impacts, reduced fuel costs and moderate climate benefits compared to liquid fossil fuels, but with large variation across different LNG engine types. Methane slip from some engines is unacceptably high, whereas the best performing LNG engine offers up to 28% reduction in global warming potential when combined with the best-case LNG supply chain. Total methane emissions must be reduced to 0.8–1.6% to ensure climate benefit is realised across all timescales compared to current liquid fuels. However, it is no longer acceptable to merely match incumbent fuels; progress must be made towards decarbonisation targets. With methane emissions reduced to 0.5% of throughput, energy efficiency must increase 35% to meet a 50% decarbonisation target.

Journal article

Morillón Gálvez D, Silva Casarín R, Rosas Flores JA, Felix Delgado A, García Kerdan Iet al., 2021, Impact of the Sea Breeze and Wind in the Bioclimate of Mexico

<jats:p>El objetivo de este documento es mostrar los aspectos relacionados con la ventilación natural y el confort, en específico el beneficio que representa en las costas del país la brisa marina para el confort. Así como, brindar información mediante mapas del aprovechamiento del viento y la brisa marina, como potencial para climatización natural de los edificios en México, además de estimar más adelante el beneficio energético y ambiental por el aprovechamiento de la brisa marina en los ecosistemas costeros y el viento en todo el país.</jats:p>

Journal article

García Kerdan I, Giarola S, Skinner E, Tuleu M, Hawkes Aet al., 2020, Modelling future agricultural mechanisation of major crops in China: an assessment of energy demand, land use and emissions, Energies, Vol: 13, Pages: 6636-6636, ISSN: 1996-1073

Agricultural direct energy use is responsible for about 1–2% of global emissions and is the major emitting sector for methane (2.9 GtCO2eq y−1) and nitrous oxide (2.3 GtCO2eq y−1). In the last century, farm mechanisation has brought higher productivity levels and lower land demands at the expense of an increase in fossil energy and agrochemicals use. The expected increase in certain food and bioenergy crops and the uncertain mitigation options available for non-CO2 emissions make of vital importance the assessment of the use of energy and the related emissions attributable to this sector. The aim of this paper is to present a simulation framework able to forecast energy demand, technological diffusion, required investment and land use change of specific agricultural crops. MUSE-Ag & LU, a novel energy systems-oriented agricultural and land use model, has been used for this purpose. As case study, four main crops (maize, soybean, wheat and rice) have been modelled in mainland China. Besides conventional direct energy use, the model considers inputs such as fertiliser and labour demand. Outputs suggest that the modernisation of agricultural processes in China could have the capacity to reduce by 2050 on-farm emissions intensity from 0.024 to 0.016 GtCO2eq PJcrop−1 (−35.6%), requiring a necessary total investment of approximately 319.4 billion 2017$US.

Journal article

García Kerdan I, Morillón Gálvez D, 2020, Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building, Applied Energy, Vol: 280, Pages: 1-21, ISSN: 0306-2619

In recent years, surrogate modelling approaches have been implemented to overcome the time and computational power demands of traditional building energy modelling. Artificial neural networks (ANN), due to their potential to capture building energy systems complex interactions are regarded as powerful surrogate models; however, the definition of optimal ANN structures and hyperparameters have been overlooked causing substandard prediction performance. The aim of this study is to present a novel hybrid neuro-genetic modelling framework developed as an open source tool capable of identifying optimal multi-input/multi-output ANN structures for accurately predicting building thermodynamic performance. The ANN optimisation process uses a genetic algorithm that minimises the root mean squared error (RMSE) data difference between the target and predicted values for both the training and testing data. As a case study, an archetype social house located in different climatic regions in Mexico is used. The ANN training database has been generated by simulating a sample of high-resolution energy models considering a combination of different active and passive energy strategies (input data) while calculating building exergy destructions, occupant thermal comfort and life cycle cost (output data). After automatically evaluating thousands of different structures, the neuro-genetic tool has identified a single deep ANN structure (3 hidden layers with 18, 17, 20 neurons respectively) capable of predicting the model’s high output variability, achieving a prediction accuracy >0.95 for each of the outputs. The presented framework and tool can be adapted to further optimisation stages in the building design process and to solve similar problems in other research areas.

Journal article

Torres-Rodríguez A, Morillón-Gálvez D, Aldama-Ávalos D, Hernández-Gómez VH, García Kerdan Iet al., 2020, Thermal performance evaluation of a passive building wall with CO2-filled transparent thermal insulation and paraffin-based PCM, Solar Energy, Vol: 205, Pages: 1-11, ISSN: 0038-092X

Novel thermal insulation materials and wall configurations have the potential to play a major role in reducing energy demand and carbon emissions from the building sector. In this study, a passive heating wall system composed by a CO2-filled transparent thermal insulation (TTI) and an organic phase change material (PCM), and a passive cooling system composed by a Tromble Wall with nano-film and a CO2-filled TTI are proposed and evaluated. The aim is to present a detailed analytical model for rapidly calculating thermal performance of the proposed wall configurations. As case study, a 108 m2 south façade of a building located in Mexico has been used. Outputs suggest that as a passive heating measure, the system has the potential to supply heat in the order of 118 W, 126 W, 134 W, and 157 W, during the months of December, January, February, and March respectively. Additionally, thermal performance and air velocity simulations suggest that for the heating case, considering an outdoor and indoor temperature conditions of 0 °C and 21 °C respectively, the internal layer surface reaches a temperature of 9.2 °C; while for the cooling case, considering outdoor and indoor temperature conditions of 25 °C and 21 °C respectively, it reaches 22.5 °C with a maximum indoor air velocity of 0.5 m/s. Compared to other gases, CO2 could hold a greater potential due to its low thermal conductivity and capital costs. Large-scale implementation of such systems could make the building sector an interesting option as an artificial sink for carbon storage.

Journal article

Garcia Kerdan I, Giarola S, Hawkes A, 2020, Implications of future natural gas demand on sugarcane production, land use Change and related emissions in Brazil, Journal of Sustainable Development of Energy, Water and Environment Systems, Vol: 8, Pages: 304-327, ISSN: 1848-9257

Due to its low share of energy-related emissions, energy systems models have overlooked the implications of technological transition in the agricultural sector and its interaction in the wider energy system. This paper explores the role of agriculture intensification by using a novel agricultural-based energy systems model. The aim is to explore the future role of Brazil’s agriculture and its dynamics with other energy sectors under two carbon constraint scenarios. The main focus has been to study resource competition between sugarcane and natural gas at a country level. Results show that in order to meet the future food and bioenergy demand, the agricultural sector would start intensifying by 2030, improving productivity at the expense of higher energy demand, however, land-related emissions would be minimised due to freed-up pasture land and reduction in deforestation rates. Additionally, the development of balanced bioenergy and natural gas markets may help limit the sugarcane expansion rates, preserving up to 12.6 million hectares of forest land, with significant emissions benefits.

Journal article

Lyrio de Oliveira L, García Kerdan I, de Oliveira Ribeiro C, Oller do Nascimento CA, Rego EE, Giarola S, Hawkes Aet al., 2020, Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study, Renewable and Sustainable Energy Reviews, Vol: 123, Pages: 1-15, ISSN: 1364-0321

In Brazil, bioelectricity generation from sugarcane bagasse and black liquor is regarded as a sustainable electricity supply option. However, questions regarding land use, investment decisions, and demand for paper, ethanol and sugar make its future role uncertain. The aim of this paper is to present a novel modelling framework based on a soft-link between a multi-sectoral Brazilian integrated assessment model (MUSE-Brazil) and an electricity portfolio optimisation model (EPOM). The proposed framework is capable of dynamically simulating sectoral electricity demand, regional bioenergy production under land use constraints and optimal power sector technological shares in each of the electricity subsystems. Considering Brazil under a 2 °C carbon budget, two scenarios based on economic attractiveness of producing second-generation ethanol have been investigated. Under the scenario where second-generation ethanol is not produced, outputs indicate that by 2050, Brazil would increase sugarcane and wood production by 68% and 49% respectively without causing direct or indirect deforestation. Agriculture intensification is evidenced as an alternative for reducing land use disruptions. Bioelectricity share is projected to remain around 9–10%. However, if second generation ethanol becomes cost-effective, thus limiting bagasse availability, the share of bioelectricity production would decrease to approximately 7.7%, with natural gas-fired plants playing a stronger role in the future power system expansion, causing an increase on electricity sector emissions.

Journal article

Jalil Vega F, Garcia Kerdan I, Hawkes A, 2020, Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities, Applied Energy, Vol: 262, ISSN: 0306-2619

This work presents the COMET (Cities Optimisation Model for Energy Technologies) model, a spatially-resolved urban energy systems model that takes into account energy service demands for heating, cooling, electricity, and transport, and finds cost-effective pathways for supplying these demands under carbon constraints, trading-off energy supply, network infrastructure, and end-use technologies. Spatially-resolved energy service demands were obtained for the city of Sao Paulo, and six scenarios were modelled. Results show that district cooling is cost-effective in the highest linear cooling density zones, with full penetration in zones with over 1100 kWh/m by 2050. This threshold diminishes with tighter carbon constraints. Heating is electrified in all scenarios, with electric boilers and air-source heat pumps being the main supply technologies for the domestic and commercial sectors respectively by 2050. In the most carbon constrained scenario with a medium decarbonised electricity grid, ground source heat pumps and hydrogen boilers appear as transition technologies between 2030 and 2045 for the commercial and domestic sectors respectively, reaching 95% and 40% of each sector’s heat installed capacity in 2030. In the transport sector, ethanol cars replace gasoline, diesel, and compressed natural gas cars; compressed natural gas buses replace diesel and electric buses; and lorries continue using diesel. In carbon constrained scenarios, higher penetrations of electric cars and buses are obtained, while no change is observed for lorries. Finally, the most expensive scenario was only 6% more expensive than the reference scenario, meaning that achieving decarbonisation targets is not much costlier when comparing scenarios from a system-wide perspective.

Journal article

García Kerdan I, Jalil-Vega F, Toole J, Gulati S, Giarola S, Hawkes Aet al., 2019, Modelling cost-effective pathways for natural gas infrastructure: A southern Brazil case study, Applied Energy, Vol: 255, ISSN: 0306-2619

Currently, natural gas in Brazil represents around 12.9% of the primary energy supply, with consistent annual growth during the last decade. However, Brazil is entering a time of uncertainty regarding future gas supply, mainly as import from Bolivia is being renegotiated. As such, diversification of gas supply sources and routes need to be considered. Energy systems and infrastructure models are essential tools in assisting energy planning decisions and policy programmes at regional and international levels. In this study, a novel combination of a simulation-based integrated assessment model (MUSE-South_Brazil) and the recently-developed Gas INfrastructure Optimisation model (GINO) is presented. The Brazilian region represented by the five southern states served by the Bolivian gas pipeline (GASBOL) has been investigated. Modelled projections suggest that regional gas demand would increase from 38.8 mcm/day in 2015 to 104.3 mcm/day by 2050, mainly driven by the increasing demand in the industry and power sectors. Therefore existing regional gas infrastructure would be insufficient to cover future demands. Three different renegotiation scenarios between Brazil and Bolivia were modelled, obtaining distinct cost-optimal infrastructure expansion pathways. Depending on the scenario, the model expects gas demand to be covered by other supply options, such as an increase in pre-salt production, LNG imports and imports from a new Argentinian pipeline.

Journal article

García Kerdan I, Giarola S, Jalil-Vega F, Hawkes Aet al., 2019, Carbon sequestration potential from large-scale reforestation and sugarcane expansion on abandoned agricultural lands in Brazil, Polytechnica, Vol: 2, Pages: 9-25, ISSN: 2520-8497

Since 1850, over 145 ± 16 PgC (μ ± 1σ) has been emitted worldwide due to land-use change and deforestation. Besides industrial carbon capture and storage (CCS), storing carbon in forestry products and in regenerated forest has been recognized as a cost-effective carbon sequestration option, with an estimated worldwide sink potential of about 50–100 PgC (15–36 PgC from tropical forest alone). This paper proposes the expansion of a Brazilian integrated assessment model (MUSE-Brazil) by integrating a non-spatial biomass-growth model. The aim is to account for carbon sequestration potential from either reforestation or sugarcane expansion in abandoned agricultural lands. Modelling outputs suggest that Brazil has the potential to liberate up to 32.3 Mha of agricultural land by 2035, reaching 68.4 Mha by mid-century. If a sugarcane expansion policy is promoted, by 2050, the largest sequestration rates would come from above and below ground biomass pools; gradually releasing to the atmosphere around 1.6 PgC or 1.2% of the current Brazilian land carbon stock due to lower SOC carbon pools when turning agricultural lands into sugarcane crops. On the other hand, a reforestation-only scenario projects that by 2035 the baseline year carbon stock could be recovered and by 2050 the country’s carbon stock would have been increased by 3.2 PgC, reaching annual net sequestration rates of 0.1 PgC y−1, mainly supported by natural vegetation regeneration in the Cerrado biome.

Journal article

García Kerdan I, Giarola S, Hawkes A, 2019, A novel energy systems model to explore the role of land use and reforestation in achieving carbon mitigation targets: A Brazil case study, Journal of Cleaner Production, Vol: 232, Pages: 796-821, ISSN: 0959-6526

Due to its low global share of direct energy consumption and greenhouse gas emissions (1–2%), the implications of technological transitions in the agricultural and forestry sector on the energy system have been overlooked. This paper introduces the Agriculture and Land Use Sector module part of the ModUlar energy System Environment (MUSE), a novel energy system simulation model. The study presents a generalisable method that enables energy modellers to characterise agricultural technologies within an energy system modelling framework. Different mechanisation processes were characterised to simulate intensification/extensification transitions in the sector and its wider implications in the energy and land use system aiming at providing reliable non-energy outputs similarly to those found in dedicated land use models. Additionally, a forest growth model has been integrated to explore the role of reforestation alongside decarbonisation measures in the energy system in achieving carbon mitigation pathways. To illustrate the model's capabilities, Brazil is used as case study. Outputs suggest that by 2030 under a 2 °C mitigation scenario, most of Brazil agricultural production would move from ‘transitional’ to ‘modern’ practices, improving productivity and reducing deforestation rates, at the expense of higher energy and fertiliser demand. By mid-century Brazil has the potential to liberate around 24.4 Mha of agricultural land, where large-scale reforestation could have the capacity to sequester around 5.6 GtCO2, alleviating mitigation efforts in the energy system, especially reducing carbon capture and storage technology investments in the industry and power sector.

Journal article

Torres-Rodríguez A, Morillón-Gálvez D, Aldama-Ávalos D, Morales-Ramírez JD, García Kerdan Iet al., 2019, Predicting the thermal behaviour of sands considering its moisture content and grain size with applications to geothermal heat pump installations, Energy and Buildings, Vol: 194, Pages: 85-104, ISSN: 0378-7788

Space conditioning has one of the highest end-use service demands in the building sector. To avoid negative effects on the energy system and the environment, efficient energy sources and technologies must be implemented to provide future heating and cooling requirements. Geothermal heat pump systems (GHPS) are one of the technologies with highest thermodynamic and cost performance; nevertheless, its performance highly depends on local geological characteristics. In this study, a thermodynamic assessment of different types of sands, that could potentially be used as energy sources for GHPS in dry regions, has been conducted. The experiment focuses on understanding the thermal behaviour of five dry sand samples with different standard sieve sizes according to ASTM designations (Nos. 50, 45, 30, 16, and 14) and moisture content capacities. Based on the obtained data, a mathematical model to predict sand temperatures has been derived considering grain size, shape and moisture content. Compared to previous models, our results show that the developed model computed more accurate approximations compared to actual temperatures, providing a robust thermal behaviour model of dry regions’ sands that could be used in building simulation tools more effectively.

Journal article

García Kerdan I, Morillón Gálvez D, Sousa G, Suárez de la Fuente S, Silva R, Hawkes Aet al., 2019, Thermodynamic and thermal comfort optimisation of a coastal social house considering the influence of the thermal breeze, Building and Environment, Vol: 155, Pages: 224-246, ISSN: 0360-1323

Tropical coastal areas are characterised by high levels of wind and solar resources with large potentials to be utilised for low-energy building design. This paper presents a multi-objective optimisation framework capable of evaluating cost-efficient and low-exergy coastal building designs considering the influence of the thermal breeze. An integrated dynamic simulation tool has been enhanced to consider the impacts of the sea-land breeze effect, aiming at potentiating natural cross-ventilation to improve occupant's thermal comfort and reduce cooling energy demand. Furthermore, the technological database considers a wide range of active and passive energy conservation measures. As a case study, a two-storey/two-flat detached social house located in the North-Pacific coast of Mexico has been investigated. The optimisation problem has considered the minimisation of: i. annual exergy consumption, ii. life cycle cost, and iii. thermal discomfort. Optimisation results have shown that adequate building orientation and window opening control to optimise the effects of the thermal breeze, combined with other passive and active strategies such as solar shading devices, an improved envelope's physical characteristics, and solar assisted air source heat pumps have provided the best performance under a limited budget. Compared to the baseline design, the closest to utopia design has increased thermal comfort by 93.8% and reduced exergy consumption by 10.3% whilst increasing the life cycle cost over the next 50 years by 18.5% (from US$39,864 to US$47,246). The importance of renewable generation incentives is further discussed as a counter effect measure for capital cost increase as well as unlocking currently high-cost low-exergy technologies.

Journal article

Suárez de la Fuente S, Larsen U, Pawling R, García Kerdan I, Greig A, Bucknall Ret al., 2018, Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit, Energy, Vol: 159, Pages: 1046-1059, ISSN: 0360-5442

Ice coverage in the Arctic is declining, opening up new shipping routes which can drastically reduce voyage lengths between Asia and Europe. There is also a drive to improve ships energy efficiency to meet international emissions design regulations such as the mandated Energy Efficiency Design Index. The organic Rankine cycle is one thermodynamic cycle that is being actively examined to improve the design and operational efficiency of ships.Low heat sink temperatures can significantly increase waste heat recovery systems thermal efficiency. In Arctic regions, the ambient air temperature can be much lower than the sea temperature, presenting interesting opportunities. However, using air as the cooling medium requires larger condensers and power compared to a water-cooled system.This paper investigates the exploitation of the forward movement of a container ship navigating in the Arctic and density-change induced flows as means of moving air through the condenser to reduce the fan power required. The organic Rankine cycle unit uses the waste heat available from the scavenge air to produce electric power. A two-step optimisation method is used with the objective of minimising the annual CO2 emissions of the ship. The results suggest that the supportive cooling could reduce the fan power by up to 60%, depending on ambient air temperature.

Journal article

Garcia Kerdan I, Hawkes AD, Giarola S, 2018, Implications of Future Natural Gas Infrastructure on Bioenergy Production, Land Use Change and Related Emissions: A Brazil Case Study, 1st SDEWES Latin America

Due to its low global share of direct energy consumption (3-5%) and greenhouse gas emissions (1-2%), energy systems models (ESM) have unfairly overlooked the implications of technological transitions in the agricultural sector. In fact, if the demand of agrochemicals and land use changes (LUC) due to expansion of bioenergy crops and increasing food demand are considered, the sector is indirectly responsible for up to 30% of global emissions. This paper introduces the Agriculture and Land Use Sector Simulation Module (Ag&LU-SM) which is integrated in a novel ESM, called MUSE, the ModUlar energy systems Simulation Environment. The Ag&LU-SM simulates the investments in agricultural energy technologies through the concept of mechanisation diffusion to meet the demand of sector’s commodities, such as crops, animal and forestry products, as well as the implications due to LUC when arable or forest land is allocated to bioenergy crops. The aim is to study the sector’s dynamics and resource competition between bioenergy and natural gas at a country level. Brazil, one of the major bioenergy producers and with large amounts of oil and natural gas reserves, is used as a case study to study the implications in terms of land use change in two different scenarios. One scenario explores a ten-fold expansion of bioenergy production by 2050, which means a 6% annual growth rate. The second scenario explores the expansion of natural gas production while halving bioenergy production (3% annual growth rate). Results show that, in order to meet the future food and bioenergy demand, the agricultural sector should move from transitional to modern agricultural practices, improve the productivity at the expense of higher energy consumption, invest in efficient agricultural practices to reduce land-related emissions and have the opportunity to liberate crop and pasture land that could be used for dedicated energy crops. Finally, the development of a gas infrastructure coul

Conference paper

De La Fuente SS, Larsen U, Pawling R, García Kerdan I, Greig Aet al., 2017, Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit, IV International Seminar on ORC Power Systems, ORC2017, Publisher: Elsevier, Pages: 1010-1017, ISSN: 1876-6102

Ice coverage in the Arctic is declining, allowing for new shipping routes. Navigating Rotterdam-Yokohama through the Arctic instead of going through the Suez Canal reduces the travel distance by about 60% thus potentially reducing fuel consumption, CO2emissions and other pollution factors. It is important to reduce the environmental impact further in the sensitive Artic, and this can be done with a waste heat recovery system (WHRS). Low heat sink temperatures increase the WHRS thermal efficiency substantially and the cold Arctic air presents an attractive opportunity at the cost of increased power consumption due to air moving through the condenser. This paper investigates the exploitation of the forward movement of a container ship navigating in the Arctic Circle and density-change induced flow as means of moving air through the condenser in an organic Rankine cycle (ORC) unit to reduce the fan power required. The ORC unit uses the available waste heat in the scavenge air system to produce electric power. The paper uses a two-step optimisation method with the objective of minimising the ship's annual CO2emissions. The results suggest that using the supportive cooling could reduce the fan power by up to 60%, depending on the ambient air temperature.

Conference paper

Kerdan IG, Raslan R, Ruyssevelt P, Galvez DMet al., 2017, ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation, Applied Energy, Vol: 192, Pages: 33-58, ISSN: 0306-2619

Energy simulation tools have a major role in the assessment of building energy retrofit (BER) measures. Exergoeconomic analysis and optimisation is a common practice in sectors such as the power generation and chemical processes, aiding engineers to obtain more energy-efficient and cost-effective energy systems designs. ExRET-Opt, a retrofit-oriented modular-based dynamic simulation framework has been developed by embedding a comprehensive exergy/exergoeconomic calculation method into a typical open-source building energy simulation tool (EnergyPlus). The aim of this paper is to show the decomposition of ExRET-Opt by presenting modules, submodules and subroutines used for the framework’s development as well as verify the outputs with existing research data. In addition, the possibility to perform multi-objective optimisation analysis based on genetic-algorithms combined with multi-criteria decision making methods was included within the simulation framework. This addition could potentiate BER design teams to perform quick exergy/exergoeconomic optimisation, in order to find opportunities for thermodynamic improvements along the building’s active and passive energy systems. The enhanced simulation framework is tested using a primary school building as a case study. Results demonstrate that the proposed simulation framework provide users with thermodynamic efficient and cost-effective designs, even under tight thermodynamic and economic constraints, suggesting its use in everyday BER practice.

Journal article

García Kerdan I, Raslan R, Ruyssevelt P, Morillón Gálvez Det al., 2017, A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design, Energy, Vol: 128, Pages: 244-263, ISSN: 0360-5442

This study presents a comparison of the optimisation of building energy retrofit strategies from two different perspectives: an energy/economic-based analysis and an exergy/exergoeconomic-based analysis. A recently retrofitted community centre is used as a case study. ExRET-Opt, a novel building energy/exergy simulation tool with multi-objective optimisation capabilities based on NSGA-II is used to run both analysis. The first analysis, based on the 1st Law only, simultaneously optimises building energy use and design's Net Present Value (NPV). The second analysis, based on the 1st and the 2nd Laws, simultaneously optimises exergy destructions and the exergoeconomic cost-benefit index. Occupant thermal comfort is considered as a common objective function for both approaches. The aim is to assess the difference between the methods and calculate the performance among main indicators, considering the same decision variables and constraints. Outputs show that the inclusion of exergy/exergoeconomics as objective functions into the optimisation procedure has resulted in similar 1st Law and thermal comfort outputs, while providing solutions with less environmental impact under similar capital investments. This outputs demonstrate how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws becomes a sufficient condition for the analysis and design of low carbon buildings.

Journal article

Garcia Kerdan I, Raslan R, Ruyssevelt P, Morillon Galvez Det al., 2017, The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making, Energy Policy, Vol: 105, Pages: 467-483, ISSN: 0301-4215

State-of-the-art research suggests that energy systems are best evaluated using exergy analysis, as exergy represents the real value of an energy source, demonstrating it to be the only rational basis for evaluation. After discovering the lack of thermodynamic integration into stock modelling, this paper presents the development of an exergy-based building stock model. The aim of this paper is twofold. Firstly, to investigate the impact of large-scale future energy retrofit scenarios in the English and Welsh (E&W) non-domestic sector, and secondly, to determine the potential of exergy analysis in improving sectoral efficiency and its potential implications on exergy-oriented policy making. The research explores seven different large-scale future retrofit scenarios that encompass typical, low-carbon, and low-exergy approaches. Modelling results show that by 2050, current regulations have the potential to reduce carbon emissions by up to 49.0±2.9% and increasing sector thermodynamic efficiency from 10.7% to 13.7%. On the other hand, a low-exergy oriented scenario based on renewable electricity and heat pumps is able to reduce carbon emissions by 88.2±2.4%, achieving a sectoral exergy efficiency of 19.8%. This modelling framework can provide energy policy makers with new insights on policy options based on exergy indicators and the assessment of their potential impact.

Journal article

García Kerdan I, Raslan R, Ruyssevelt P, Vaiciulyte S, Morillón Gálvez Det al., 2017, Thermodynamic and exergoeconomic analysis of a non-domestic Passivhaus retrofit, Building and Environment, Vol: 117, Pages: 100-117, ISSN: 0360-1323

This paper presents a thermodynamic and exergoeconomic analysis of a recently-retrofitted Passivhaus non-domestic building. The selected case study, a Community Centre located in London, underwent a deep-energy retrofit in 2011, becoming the first ‘non-domestic Passivhaus’ retrofit in the country. As the building was retrofitted per Passivhaus standards, which is based solely on First Law analysis, a thermodynamic investigation can provide a novel means by which to assess its exergy efficiency and cost-effectiveness. As such, the aim of this paper is to conduct a comprehensive exergy and exergoeconomic analysis, presenting novel performance indicators for the pre-retrofit and post-retrofit Passivhaus building. First law outputs show that the improvement presents high levels of energy savings (75.6%), reductions in carbon emissions (64.5%), and occupant thermal comfort improvement (28.8%). Second law outputs present a reduction in primary exergy input reduction of 56.4% and exergy destructions of 60.4%, leading to improve building exergy efficiency from 9.8% to 18.0%. Nevertheless, exergoeconomically the building did not perform as expected due to high capital cost and exergy destructions cost rates. These results give an insight into the thermodynamic impact of the Passivhaus approach, providing a critical assessment of the strengths and limitations of the standard under both thermodynamic laws.

Journal article

Kerdan IG, Raslan R, Ruyssevelt P, 2016, An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings, Energy, Vol: 117, Pages: 506-522, ISSN: 0360-5442

While the building sector has a significant thermodynamic improvement potential, exergy analysis has been shown to provide new insight for the optimisation of building energy systems. This paper presents an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK archetype case studies (an office and a primary school) were used to test the feasibility of the proposed framework. Different measures combinations based on retrofitting the envelope insulation levels and the application of different HVAC configurations were assessed. The objective functions in this study are annual energy use, occupants' thermal comfort, and total building exergy destructions. A large range of optimal solutions was achieved highlighting the framework capabilities. The model achieved improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended by using exergoeconomic optimisation.

Journal article

Kerdan IG, Raslan R, Ruyssevelt P, Morillon Galvez Det al., 2016, An exergoeconomic-based parametric study to examine the effects of active and passive energy retrofit strategies for buildings, Energy and Buildings, Vol: 133, Pages: 155-171, ISSN: 1872-6178

The paper describes a systematic framework that uses exergoeconomic theory integrated into ‘building energy retrofit’ (BER) design. An exergoeconomic module, based on the SPECO method, has been embedded into ‘EXRETOpt’, a recently developed retrofit-oriented exergy simulation tool based on EnergyPlus. Both active and passive technologies were analysed using two calibrated archetype non-domestic buildings as case studies (an office and a primary school). A novel cost-benefit indicator which accounts for building exergy destruction cost, retrofit annual capital cost, and project annual revenue is presented. This indicator is employed to account for best exergoeconomic performance technologies and to further develop deep BER packages. Compared to typical practice, exergoeconomics combined with cost-benefit provides a powerful tool for exploration and design improvement of building energy systems. In both cases, final product cost for heating and cooling processes were substantially reduced. In addition, the office case presented improvements in energy use by 67%, CO2 emissions by 53%, thermal comfort by 22%, exergy destructions by 42%, and the overall building exergy efficiency was improved from 14.8% to 20.0%. The school case presented similar results with an improvement of building exergy efficiency from 8.2% to 11.1%, and the potential to generate income due to current government incentives.

Journal article

Papasifaki A, Garcia Kerdan I, Ucci M, 2016, Multi Objective Optimisation analysis of non-domestic building retrofit strategies in the UK, under climate change uncertainty: A Passivhaus case study approach, 6th Masters Conference: People and Buildings

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00933190&limit=30&person=true