Imperial College London

DrIsabelleLeclerc

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 3354i.leclerc

 
 
//

Location

 

323ICTEM buildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

112 results found

Jones B, Burade V, Akalestou E, Manchanda Y, Ramchunder Z, Carrat G, Nguyen-Tu M-S, Marchetti P, Piemonti L, Leclerc I, Thennati R, Vilsboll T, Thorens B, Tomas A, Rutter GAet al., 2022, In vivo and in vitro characterization of GL0034, a novel long-acting glucagon-like peptide-1 receptor agonist, DIABETES OBESITY & METABOLISM, ISSN: 1462-8902

Journal article

Cheung R, Pizza G, Chabosseau P, Rolando D, Tomas A, Burgoyne T, Wu Z, Salowka A, Thapa A, Macklin A, Cao Y, Nguyen-Tu M-S, Dickerson MT, Jacobson DA, Marchetti P, Shapiro J, Piemonti L, de Koning E, Leclerc I, Bouzakri K, Sakamoto K, Smith DM, Rutter GA, Martinez-Sanchez Aet al., 2022, Glucose-Dependent miR-125b Is a Negative Regulator of β-Cell Function., Diabetes, Vol: 71, Pages: 1525-1545

Impaired pancreatic β-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of β cells. We have previously shown that β cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in β cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in β cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human β-cell line EndoCβ-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in β cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg β cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.

Journal article

Georgiadou E, Muralidharan C, Martinez M, Chabosseau P, Akalestou E, Tomas A, Yong Su Wern F, Stylianides T, Wretlind A, Legido-Quigley C, Jones B, Lopez Noriega L, Xu Y, Gu G, Alsabeeh N, Cruciani-Guglielmacci C, Magnan C, Ibberson M, Leclerc I, Ali Y, Soleimanpour SA, Linnemann AK, Rodriguez TA, Rutter GAet al., 2022, Mitofusins Mfn1 and Mfn2 are required to preserve glucose- but not incretin-stimulated beta cell connectivity and insulin secretion, Diabetes, Vol: 71, Pages: 1472-1489, ISSN: 0012-1797

Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic beta cells. Whether mitofusin gene expression, and hence mitochondrial network integrity, is important for glucose or incretin signalling has not previously been explored. Here, we generated mice with beta cell-selective, adult-restricted deletion of the mitofusin genes Mfn1 and Mfn2 (βMfn1/2 dKO). βMfn1/2 dKO mice displayed elevated fed and fasted glycaemia and a >five-fold decrease in plasma insulin. Mitochondrial length, glucose-induced polarisation, ATP synthesis, cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in βMfn1/2 dKO mice and GLP-1 or GIP receptor agonists largely corrected defective GSIS through enhanced EPAC-dependent signalling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the beta cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in beta cells, the potential contributions of altered mitochondrial dynamics to diabetes development and the impact of incretins on this process.

Journal article

Nguyen-Tu M-S, Harris J, Martinez-Sanchez A, Chabosseau P, Hu M, Georgiadou E, Pollard A, Otero P, Lopez-Noriega L, Leclerc I, Sakamoto K, Schmoll D, Smith DM, Carling D, Rutter GAet al., 2022, Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase, DIABETOLOGIA, Vol: 65, Pages: 997-1011, ISSN: 0012-186X

Journal article

Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Gallie A, Wretlind A, Legido-Quigley C, Leclerc I, Salem V, Rutter GAet al., 2021, Intravital imaging of islet Ca2+ dynamics reveals enhanced beta cell connectivity after bariatric surgery in mice (vol 12, 5165, 2021), Nature Communications, Vol: 12, Pages: 1-1, ISSN: 2041-1723

Journal article

Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Gallie A, Wretlind A, Quigley C, Leclerc I, Salem V, Rutter GAet al., 2021, Intravital imaging of islet Ca2+ dynamics reveals enhanced beta cell connectivity after bariatric surgery in mice, Nature Communications, Vol: 12, Pages: 1-13, ISSN: 2041-1723

Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on β cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on β cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented β cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the β cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in β cell function and intra-islet connectivity which are likely to contribute to diabetes remission.

Journal article

Parks SZ, Gao T, Awuapura NJ, Ayathamattam J, Chabosseau PL, Kalvakolanu D, Valdivia HH, Rutter GA, Leclerc I, Nakatogawa Het al., 2021, The Ca2+-binding protein sorcin stimulates transcriptional activity of the unfolded protein response mediator ATF6, FEBS Letters, Vol: 595, Pages: 1782-1796, ISSN: 0014-5793

Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca2+ stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress. Here, using nonexcitable HEK293 cells, we show that sorcin overexpression increased ATF6 signalling, whereas sorcin knock out caused a reduction in ATF6 transcriptional activity and increased ER stress. Altogether, our data suggest that sorcin downregulation during lipotoxic stress may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance.

Journal article

Cheung R, Pizza G, Chabosseau P, Rolando D, Salowska A, Burgoyne T, Leclerc I, Tomas A, Rutter GA, Martinez-Sanchez Aet al., 2021, miR-125b impairs beta cell function in vivo by targeting lysosomal and mitochondrial genes, Publisher: WILEY, ISSN: 0742-3071

Conference paper

Mousavy Gharavy SN, Owen BM, Millership SJ, Chabosseau P, Pizza G, Martinez-Sanchez A, Tasoez E, Georgiadou E, Hu M, Fine NHF, Jacobson DA, Dickerson MT, Idevall-Hagren O, Montoya A, Kramer H, Mehta Z, Withers DJ, Ninov N, Gadue PJ, Cardenas-Diaz FL, Cruciani-Guglielmacci C, Magnan C, Ibberson M, Leclerc I, Voz M, Rutter GAet al., 2021, Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis, Diabetologia, Vol: 64, Pages: 850-864, ISSN: 0012-186X

Aims/hypothesisVariants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B.MethodsCRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry.ResultsSystemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin.Conclusions/interpretationOur studies sugge

Journal article

Nguyen-Tu M-S, Martinez-Sanchez A, Leclerc I, Rutter GA, da Silva Xavier Get al., 2020, Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice, DIABETOLOGIA, Vol: 64, Pages: 129-141, ISSN: 0012-186X

Journal article

Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung ACH, Sessions RB, Alpy F, Kong APS, Benke PI, Torta F, Keong Teo AK, Leclerc I, Solimena M, Wigley DB, Rutter GAet al., 2020, The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis, Molecular Metabolism, Vol: 40, ISSN: 2212-8778

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of âStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transp

Journal article

Callingham RM, Leclerc I, Pullen TJ, Rutter GAet al., 2020, The impact of a long non-coding RNA at the Pax6 locus on beta cell identity and function, Publisher: WILEY, Pages: 38-38, ISSN: 0742-3071

Conference paper

Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Leclerc I, Salem V, Rutter GAet al., 2020, Metabolic surgery recovers Ca(2+)dynamics across pancreatic islets in obese mice, 56th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S114-S114, ISSN: 0012-186X

Conference paper

Rutter GA, Georgiadou E, Rodriguez T, Muralidharan C, Martinez M, Chabosseau P, Tomas A, Carrat G, Di Gregorio A, Leclerc I, Linnemann AKet al., 2020, Pancreatic beta cell-selective deletion of themitofusins 1 and 2 (Mfn1 and Mfn2) impairs glucose-stimulated insulin secretion in vitro and in vivo, 56th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S6-S7, ISSN: 0012-186X

Conference paper

Noriega LL, Sanchez AM, Callingham R, Akalestou E, Chabosseau P, Leclerc I, Marchetti P, Pullen TJ, Rutter GAet al., 2020, The long non-coding RNA PAX6-AS1 modulates human beta cell function, Publisher: WILEY, Pages: 38-39, ISSN: 0742-3071

Conference paper

Ali UT, Suba K, Bitsi S, Alonso AM, Patel Y, Leclerc I, Rutter GA, Rothery S, Tomas A, Salem Vet al., 2020, Improving islet transplantation success by increasing expression of the epidermal growth factor receptor (EGFR), Publisher: WILEY, Pages: 36-36, ISSN: 0742-3071

Conference paper

Akalestou E, Lopez-Noriega L, Leclerc I, Rutter GAet al., 2020, Metabolic surgery inhibits sodium glucose co-transporter 2 (SGLT2) expression in the kidney of lean mice, Publisher: WILEY, Pages: 43-43, ISSN: 0742-3071

Conference paper

Suba K, Patel Y, Alonso AM, Ukwuoma M, Kalogianni V, Leclerc I, Owen B, Rutter GA, Bloom SR, Salem Vet al., 2020, Clinical care and other categories posters: Hypoglycaemia, Publisher: WILEY, Pages: 25-25, ISSN: 0742-3071

Conference paper

Salem V, Ali U, Suba K, Bitsi S, Lopes T, Alonso AM, Patel YS, Leclerc I, Owen B, Rutter GA, Rothery SM, Tomas Aet al., 2020, Upregulation of Pancreatic Islet EGF Receptor Improves Beta-Cell Identity and In Vivo Vascularisation in a Directly Observed Transplant Model, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Carrat G, Nguyen-Tu M-S, Leclerc I, Thennati R, Jones B, Tomas A, Rutter GAet al., 2020, Binding Kinetics, GLP-1 Receptor Internalization, and Effects on Insulin Secretion for GL0034 and Related GLP-1R Agonists, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Akalestou E, Noriega LL, Christakis I, Leclerc I, Rutter GAet al., 2020, Bariatric Surgery Downregulates Glucocorticoid Signaling in Mice, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Akalestou E, Suba K, Noriega LL, Chabosseau PL, Leclerc I, Salem V, Rutter GAet al., 2020, Bariatric Surgery Improves Ca2+Dynamics across Pancreatic Islets In Vivo, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Suba K, Patel YS, Alonso AM, Scott R, Minnion JS, Leclerc I, Owen B, Distaso W, Tan TM, Murphy K, Bloom S, Rutter GA, Salem Vet al., 2020, Chronic Administration of a Long-Acting Glucagon Analogue Results in Enhanced Insulin Secretory Activity in a Directly-Observed Murine Model, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Georgiadou E, Chabosseau PL, Tomas A, Leclerc I, Rutter GAet al., 2020, Deletion of the Mitofusins 1 and 2 (Mfn1 and Mfn2) in the Pancreatic Beta Cell Disrupts Mitochondrial Structure and Function In Vitro and Strongly Impairs Glucose-Stimulated Insulin Secretion In Vivo, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Georgiadou E, Haythorne E, Dickerson MT, Lopez-Noriega L, Pullen TJ, da Silva Xavier G, Davis SPX, Martinez-Sanchez A, Semplici F, Rizzuto R, McGinty JA, French PM, Cane MC, Jacobson DA, Leclerc I, Rutter GAet al., 2020, The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice, Diabetologia, Vol: 63, Pages: 1368-1381, ISSN: 0012-186X

Aims/hypothesisMitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo.MethodsHere, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance.ResultsGlucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (βMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in βMcu-KO animals. βMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young βMcu-KO (<12 weeks), but not in older animals vs WT mice.Conclusions/interpretationMCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in βMcu-KO mice remain

Journal article

Clough TJ, Baxan N, Coakley EJ, Rivas C, Zhao L, Leclerc I, Martinez-Sanchez A, Rutter GA, Long NJet al., 2020, Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of beta-cell-dependent contrast enhancement in the pancreas, Dalton Transactions: an international journal of inorganic chemistry, Vol: 49, Pages: 4732-4740, ISSN: 1477-9226

Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic β-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of β-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in β-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(III) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in β-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]−, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of β-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.

Journal article

Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung ACH, Sessions RB, Alpy F, Kong APS, Benke PI, Torta F, Teo AKK, Leclerc I, Solimena M, Wigley DB, Rutter GAet al., 2020, The type 2 diabetes gene product STARD10 is a phosphoinositide binding protein that controls insulin secretory granule biogenesis, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:sec><jats:title>Objective</jats:title><jats:p>Risk alleles for type 2 diabetes at the<jats:italic>STARD10</jats:italic>locus are associated with lowered<jats:italic>STARD10</jats:italic>expression in the β-cell, impaired glucose-induced insulin secretion and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids, and thus the pathways through which STARD10 regulates β-cell function, are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and its effect on proinsulin processing and insulin granule biogenesis and maturation.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We used isolated islets from mice deleted selectively in the β-cell for<jats:italic>Stard10</jats:italic>(β<jats:italic>StarD10</jats:italic>KO) and performed electron microscopy, pulse-chase, RNA sequencing and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay were performed on purified STARD10 protein.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>β<jats:italic>StarD10</jats:italic>KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of “rod-like” dense cores. Correspondingly, basal secretion of proinsulin was increased. Amongst the differentially expressed genes in β<jats:italic>StarD10</jats:italic>KO islets, expression of the phosphoinositide binding proteins<jats:italic>Pirt</jats:italic>and<jats:italic>Synaptotagmin 1</jats:

Working paper

Noriega LL, Sanchez AM, Callingham R, Akalestou E, Nguyen-Tu M-S, Leclerc I, Cardenas L, Gadue PJ, Marchetti P, Pullen TJ, Rutter GAet al., 2019, The long non-coding RNA PAX6-AS1 controls human beta cell identity, 55th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S205-S206, ISSN: 0012-186X

Conference paper

Salem V, Suba K, Alonso AM, Chabosseau PL, Georgiadou E, Stylianides T, Briant L, Hodson D, Carrat G, Leclerc I, Gaboriau DC, Rothery SM, Rutter GAet al., 2019, Real-Time In Vivo Imaging of Whole Islet Ca2+Dynamics Reveals Glucose -Induced Changes in Beta-Cell Connectivity in Mouse and Human Islets, 79th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Akalestou E, Noriega LL, Chabosseau PL, Leclerc I, Rutter GAet al., 2019, Inhibition of Kidney SGLT2 Expression following Bariatric Surgery in Mice, 79th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00481854&limit=30&person=true