Imperial College London

DrIanMudway

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

i.mudway Website

 
 
//

Location

 

Uren.1017BBuilding E - Sir Michael UrenWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

179 results found

Friberg M, Behndig AF, Bosson JA, Muala A, Barath S, Dove R, Glencross D, Kelly FJ, Blomberg A, Mudway IS, Sandström T, Pourazar Jet al., 2023, Human exposure to diesel exhaust induces CYP1A1 expression and AhR activation without a coordinated antioxidant response., Part Fibre Toxicol, Vol: 20

BACKGROUND: Diesel exhaust (DE) induces neutrophilia and lymphocytosis in experimentally exposed humans. These responses occur in parallel to nuclear migration of NF-κB and c-Jun, activation of mitogen activated protein kinases and increased production of inflammatory mediators. There remains uncertainty regarding the impact of DE on endogenous antioxidant and xenobiotic defences, mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) and the aryl hydrocarbon receptor (AhR) respectively, and the extent to which cellular antioxidant adaptations protect against the adverse effects of DE. METHODS: Using immunohistochemistry we investigated the nuclear localization of Nrf2 and AhR in the epithelium of endobronchial mucosal biopsies from healthy subjects six-hours post exposure to DE (PM10, 300 µg/m3) versus post-filtered air in a randomized double blind study, as a marker of activation. Cytoplasmic expression of cytochrome P450s, family 1, subfamily A, polypeptide 1 (CYP1A1) and subfamily B, Polypeptide 1 (CYP1B1) were examined to confirm AhR activation; with the expression of aldo-keto reductases (AKR1A1, AKR1C1 and AKR1C3), epoxide hydrolase and NAD(P)H dehydrogenase quinone 1 (NQO1) also quantified. Inflammatory and oxidative stress markers were examined to contextualize the responses observed. RESULTS: DE exposure caused an influx of neutrophils to the bronchial airway surface (p = 0.013), as well as increased bronchial submucosal neutrophil (p < 0.001), lymphocyte (p = 0.007) and mast cell (p = 0.002) numbers. In addition, DE exposure enhanced the nuclear translocation of the AhR and increased the CYP1A1 expression in the bronchial epithelium (p = 0.001 and p = 0.028, respectively). Nuclear translocation of AhR was also increased in the submucosal leukocytes (p < 0.001). Epithelial nuclear AhR expression was negatively associated with bro

Journal article

Tsocheva I, Scales J, Dove R, Chavda J, Kalsi H, Wood HE, Colligan G, Cross L, Newby C, Hall A, Keating M, Sartori L, Moon J, Thomson A, Tomini F, Murray A, Hamad W, Tijm S, Hirst A, Vincent BP, Kotala P, Balkwill F, Mihaylova B, Grigg J, Quint JK, Fletcher M, Mon-Williams M, Wright J, van Sluijs E, Beevers S, Randhawa G, Eldridge S, Sheikh A, Gauderman W, Kelly F, Mudway IS, Griffiths CJet al., 2023, Investigating the impact of London's ultra low emission zone on children's health: children's health in London and Luton (CHILL) protocol for a prospective parallel cohort study., BMC Pediatr, Vol: 23

BACKGROUND: Air pollution harms health across the life course. Children are at particular risk of adverse effects during development, which may impact on health in later life. Interventions that improve air quality are urgently needed both to improve public health now, and prevent longer-term increased vulnerability to chronic disease. Low Emission Zones are a public health policy intervention aimed at reducing traffic-derived contributions to urban air pollution, but evidence that they deliver health benefits is lacking. We describe a natural experiment study (CHILL: Children's Health in London and Luton) to evaluate the impacts of the introduction of London's Ultra Low Emission Zone (ULEZ) on children's health. METHODS: CHILL is a prospective two-arm parallel longitudinal cohort study recruiting children at age 6-9 years from primary schools in Central London (the focus of the first phase of the ULEZ) and Luton (a comparator site), with the primary outcome being the impact of changes in annual air pollutant exposures (nitrogen oxides [NOx], nitrogen dioxide [NO2], particulate matter with a diameter of less than 2.5micrograms [PM2.5], and less than 10 micrograms [PM10]) across the two sites on lung function growth, measured as post-bronchodilator forced expiratory volume in one second (FEV1) over five years. Secondary outcomes include physical activity, cognitive development, mental health, quality of life, health inequalities, and a range of respiratory and health economic data. DISCUSSION: CHILL's prospective parallel cohort design will enable robust conclusions to be drawn on the effectiveness of the ULEZ at improving air quality and delivering improvements in children's respiratory health. With increasing proportions of the world's population now living in large urban areas exceeding World Health Organisation air pollution limit guidelines, our study findings will have important implications for the design and implementation of Low Emission and Clean Air Zones

Journal article

Kewcharoenwong C, Khongmee A, Nithichanon A, Palaga T, Prueksasit T, Mudway IS, Hawrylowicz CM, Lertmemongkolchai Get al., 2023, Vitamin D3 regulates PM-driven primary human neutrophil inflammatory responses., Sci Rep, Vol: 13

Recent evidence has demonstrated that both acute and chronic exposure to particulate air pollution are risk factors for respiratory tract infections and increased mortality from sepsis. There is therefore an urgent need to establish the impact of ambient particulate matter (PM) on innate immune cells and to establish potential strategies to mitigate against adverse effects. PM has previously been reported to have potential adverse effects on neutrophil function. In the present study, we investigated the impact of standard urban PM (SRM1648a, NIST) and PM2.5 collected from Chiang Mai, Thailand, on human peripheral blood neutrophil functions, including LPS-induced migration, IL-8 production, and bacterial killing. Both NIST and the PM2.5, being collected in Chiang Mai, Thailand, increased IL-8 production, but reduced CXCR2 expression and migration of human primary neutrophils stimulated with Escherichia coli LPS. Moreover, PM-pretreated neutrophils from vitamin D-insufficient participants showed reduced E. coli-killing activity. Furthermore, in vitro vitamin D3 supplementation attenuated IL-8 production and improved bacterial killing by cells from vitamin D-insufficient participants. Our findings suggest that provision of vitamin D to individuals with insufficiency may attenuate adverse acute neutrophilic responses to ambient PM.

Journal article

Wang W, Dack S, Mudway I, Walder H, Davies B, Kamanyire R, Fecht Det al., 2023, Brownfield land and health: a systematic review of the literature, PLoS One, Vol: 18, Pages: 1-15, ISSN: 1932-6203

BackgroundBrownfield land is vacant or derelict land that was previously used for industrial or commercial purposes. Brownfield land is increasingly being targeted for housing development, however, depending on the previous use and remediation activity, it might pose potential risks to the health of residents on or in the vicinity of redeveloped sites. This systematic review of the literature synthesises the empirical evidence on the associations between brownfield land and health.MethodsWe systematically searched EMBASE, MEDLINE, Global Health, Web of Science, Scopus and GreenFile using a study protocol registered on PROSPERO (CRD42022286826). The search strategy combined the keywords “brownfield” and its interchangeable terms such as “previously developed land”, and any health outcomes such as “respiratory diseases” and “mortality”. Publications identified from the search were screened for eligibility by two authors, and data were extracted from the selected articles. Study quality was assessed based on the Newcastle-Ottawa Scale.ResultsOf the 1,987 records retrieved, 6 studies met the inclusion criteria; 3 ecological studies, 2 cross-sectional studies, and 1 longitudinal study. There was considerable heterogeneity in the exposure metrics and health outcomes assessed. All studies found significant positive associations between brownfield land proximity or density with at least one health relevant outcome, including poorer self-reported general health, increased mortality rates, increased birth defects, increased serum metal levels, and accelerated immune ageing.ConclusionsBrownfield land may negatively affect the health of nearby residents. The epidemiological evidence on health effects associated with brownfield land in local communities, however, remains inconclusive and limited. Further studies are required to build the evidence base to inform future housing policies and urban planning.

Journal article

Ronaldson A, Stewart R, Mueller C, Das-Munshi J, Newbury JB, Mudway IS, Broadbent M, Fisher HL, Beevers S, Dajnak D, Hotopf M, Hatch SL, Bakolis Iet al., 2023, Associations between air pollution and mental health service use in dementia: a retrospective cohort study, BMJ MENTAL HEALTH, Vol: 26

Journal article

Scales J, Chavda J, Ikeda E, Tsocheva I, Dove RE, Wood HE, Kalsi H, Colligan G, Griff L, Day B, Crichlow C, Keighley A, Fletcher M, Newby C, Tomini F, Balkwill F, Mihaylova B, Grigg J, Beevers S, Eldridge S, Sheikh A, Gauderman J, Kelly F, Randhawa G, Mudway IS, van Sluijs E, Griffiths CJet al., 2023, Device-Measured Change in Physical Activity in Primary School Children During the UK COVID-19 Pandemic Lockdown: A Longitudinal Study, JOURNAL OF PHYSICAL ACTIVITY & HEALTH, ISSN: 1543-3080

Journal article

Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Karedal M, Mudway I, Larsson-Callerfelt A-K, Shaw Met al., 2023, Uncovering the cytotoxic effects of air pollution with multi-modal imaging of<i> in vitro</i> respiratory models, ROYAL SOCIETY OPEN SCIENCE, Vol: 10, ISSN: 2054-5703

Journal article

de la Torre JA, Ronaldson A, Alonso J, Dregan A, Mudway I, Valderas JM, Vineis P, Bakolis Iet al., 2023, The relationship between air pollution and multimorbidity: Can two birds be killed with the same stone?, EUROPEAN JOURNAL OF EPIDEMIOLOGY, Vol: 38, Pages: 349-353, ISSN: 0393-2990

Journal article

Roberts M, Colley K, Currie M, Eastwood A, Li K-H, Avery LM, Beevers LC, Braithwaite I, Dallimer M, Davies ZG, Fisher HL, Gidlow CJ, Memon A, Mudway IS, Naylor LA, Reis S, Smith P, Stansfeld SA, Wilkie S, Irvine KNet al., 2023, The Contribution of Environmental Science to Mental Health Research: A Scoping Review., Int J Environ Res Public Health, Vol: 20

Mental health is influenced by multiple complex and interacting genetic, psychological, social, and environmental factors. As such, developing state-of-the-art mental health knowledge requires collaboration across academic disciplines, including environmental science. To assess the current contribution of environmental science to this field, a scoping review of the literature on environmental influences on mental health (including conditions of cognitive development and decline) was conducted. The review protocol was developed in consultation with experts working across mental health and environmental science. The scoping review included 202 English-language papers, published between 2010 and 2020 (prior to the COVID-19 pandemic), on environmental themes that had not already been the subject of recent systematic reviews; 26 reviews on climate change, flooding, air pollution, and urban green space were additionally considered. Studies largely focused on populations in the USA, China, or Europe and involved limited environmental science input. Environmental science research methods are primarily focused on quantitative approaches utilising secondary datasets or field data. Mental health measurement was dominated by the use of self-report psychometric scales. Measures of environmental states or exposures were often lacking in specificity (e.g., limited to the presence or absence of an environmental state). Based on the scoping review findings and our synthesis of the recent reviews, a research agenda for environmental science's future contribution to mental health scholarship is set out. This includes recommendations to expand the geographical scope and broaden the representation of different environmental science areas, improve measurement of environmental exposure, prioritise experimental and longitudinal research designs, and giving greater consideration to variation between and within communities and the mediating pathways by which environment influences mental hea

Journal article

Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding Set al., 2023, Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England, PLoS One, Vol: 18, Pages: 1-18, ISSN: 1932-6203

Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11–13 to 14–16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11–13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.

Journal article

Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski MM, Pain CC, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AEet al., 2023, Characteristics of fine and ultrafine aerosols in the London underground., Science of the Total Environment, Vol: 858, ISSN: 0048-9697

Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM0.1), fine (PM0.1-2.5) and coarse (PM2.5-10) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5, PM2.5-10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 μg m-3) and PM2.5 (34 μg m-3) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1), highlight the need to improve the ventilation conditions.

Journal article

Tandon S, Grande AJ, Karamanos A, Cruickshank JK, Roever L, Mudway IS, Kelly FJ, Ayis S, Harding Set al., 2023, Association of Ambient Air Pollution with Blood Pressure in Adolescence: A Systematic-review and Meta-analysis, CURRENT PROBLEMS IN CARDIOLOGY, Vol: 48, ISSN: 0146-2806

Journal article

Ronaldson A, Arias de la Torre J, Ashworth M, Hansell AL, Hotopf M, Mudway I, Stewart R, Dregan A, Bakolis Iet al., 2022, Associations between air pollution and multimorbidity in the UK Biobank: A cross-sectional study, FRONTIERS IN PUBLIC HEALTH, Vol: 10

Journal article

Glencross D, Cheadle C, Palaga T, Prueksasit T, Lertmemongkolchai G, Mudway I, Hawrylowicz Cet al., 2022, Evidence for a role of the aryl hydrocarbon receptor in inflammatory responses to air pollution, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Glencross D, Cheadle C, Palaga T, Prueksasit T, Lertmemongkolchai G, Mudway I, Hawrylowicz Cet al., 2022, Source-specific Th17 responses induced by real-world air pollution and amelioration by vitamin D, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Sartori L, Kalsi HS, Scales J, Tsocheva I, Dove R, Chavda J, Colligan G, Wood HE, Cross L, Moon J, Hall A, Newby C, Mudway IS, Randhawa G, Griffiths CJet al., 2022, Investigating the impact of London's Ultra Low Emission Zone (ULEZ) on children's respiratory health: Lung function of participants in the CHILL Study, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Yet al., 2022, A Review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures., Environmental Science and Technology (Washington), Vol: 56, ISSN: 0013-936X

Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.

Journal article

Lim S, Mudway I, Molden N, Holland J, Barratt Bet al., 2022, Identifying trends in ultrafine particle infiltration and carbon dioxide ventilation in 92 vehicle models, SCIENCE OF THE TOTAL ENVIRONMENT, Vol: 812, ISSN: 0048-9697

Journal article

Kelly F, scales J, Chavda J, Dove R, Wood H, Kalsi H, Cross L, Newby C, Hall A, Keating M, Day B, Sheikh A, Eldridge S, Grigg J, Mudway I, Griffiths C, Beevers S, Wright J, Fletcher M, Keighley A, Thomson Aet al., 2021, Investigating the impact of London’s Ultra Low Emission Zone on children’s health: Children’s Health in London and Luton (CHILL): Protocol for a prospective parallel cohort study, medRxiv

Journal article

Newbury JB, Stewart R, Fisher HL, Beevers S, Dajnak D, Broadbent M, Pritchard M, Shiode N, Heslin M, Hammoud R, Hotopf M, Hatch SL, Mudway IS, Bakolis Iet al., 2021, Association between air pollution exposure and mental health service use among individuals with first presentations of psychotic and mood disorders: retrospective cohort study, The British Journal of Psychiatry, Vol: 219, Pages: 678-685, ISSN: 0007-1250

Background:Growing evidence suggests that air pollution exposure may adversely affect the brain and increase risk for psychiatric disorders such as schizophrenia and depression. However, little is known about the potential role of air pollution in severity and relapse following illness onset.Aims:To examine the longitudinal association between residential air pollution exposure and mental health service use (an indicator of illness severity and relapse) among individuals with first presentations of psychotic and mood disorders.Method:We identified individuals aged ≥15 years who had first contact with the South London and Maudsley NHS Foundation Trust for psychotic and mood disorders in 2008–2012 (n = 13 887). High-resolution (20 × 20 m) estimates of nitrogen dioxide (NO2), nitrogen oxides (NOx) and particulate matter (PM2.5 and PM10) levels in ambient air were linked to residential addresses. In-patient days and community mental health service (CMHS) events were recorded over 1-year and 7-year follow-up periods.Results:Following covariate adjustment, interquartile range increases in NO2, NOx and PM2.5 were associated with 18% (95% CI 5–34%), 18% (95% CI 5–34%) and 11% (95% CI 3–19%) increased risk for in-patient days after 1 year. Similarly, interquartile range increases in NO2, NOx, PM2.5 and PM10 were associated with 32% (95% CI 25–38%), 31% (95% CI 24–37%), 7% (95% CI 4–11%) and 9% (95% CI 5–14%) increased risk for CMHS events after 1 year. Associations persisted after 7 years.Conclusions:Residential air pollution exposure is associated with increased mental health service use among people recently diagnosed with psychotic and mood disorders. Assuming causality, interventions to reduce air pollution exposure could improve mental health prognoses and reduce healthcare costs.

Journal article

Lim S, Holliday L, Barratt B, Griffiths CJ, Mudway ISet al., 2021, Assessing the exposure and hazard of diesel exhaust in professional drivers: a review of the current state of knowledge, Air Quality, Atmosphere and Health, Vol: 14, Pages: 1681-1695, ISSN: 1873-9318

It is well-established that traffic-related air pollution has a detrimental impact on health. Much of the focus has been on diesel exhaust emissions due to a rapid increase in vehicle numbers and studies finding that this pollutant is carcinogenic. Unsurprisingly, the highest diesel exposures that the general population experiences are during urban daily commutes; however, few studies have considered professional drivers who are chronically exposed to the pollutant due to their work in transport microenvironments. In this narrative review, we address the literature on professional drivers’ exposure to diesel exhaust and advocate that a modern exposure science approach utilised in commuter personal exposure studies is needed. This type of evaluation will provide a more detailed understanding of the time-activity of professional drivers’ exposures which is required to identify specific interventions to reduce their risk to diesel exhaust emissions.

Journal article

Karamanos A, Mudway I, Webb A, Lu Y, Kelly F, Dajnak D, Beevers SD, Elia C, Maynard M, Harding S, Cruickshank JKet al., 2021, Air pollution and Blood Pressure change over time in 3323 adolescents in London: differences by gender and ethnicity, 2021 Annual Scientific Meeting of the British and Irish Hypertension Society (BIHS), Publisher: Springer Nature [academic journals on nature.com], Pages: 2-2, ISSN: 0950-9240

Conference paper

Lim S, Barratt B, Holliday L, Griffiths CJ, Mudway Iet al., 2021, Characterising professional drivers’ exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring, Environment International, Vol: 153, ISSN: 0160-4120

Professional drivers working in congested urban areas are required to work near harmful traffic related pollutants for extended periods, representing a significant, but understudied occupational risk. This study collected personal black carbon (BC) exposures for 141 drivers across seven sectors in London. The aim of the study was to assess the magnitude and the primary determinants of their exposure, leading to the formulation of targeted exposure reduction strategies for the occupation. Each participant’s personal BC exposures were continuously measured using real-time monitors for 96 h, incorporating four shifts per participant. ‘At work’ BC exposures (3.1 ± 3.5 µg/m3) were 2.6 times higher compared to when ‘not at work’ (1.2 ± 0.7 µg/m3). Workers spent 19% of their time ‘at work driving’, however this activity contributed 36% of total BC exposure, highlighting the disproportionate effect driving had on their daily exposure. Taxi drivers experienced the highest BC exposures due to the time they spent working in congested central London, while emergency services had the lowest. Spikes in exposure were observed while driving and were at times greater than 100 µg/m3. The most significant determinants of drivers’ exposures were driving in tunnels, congestion, location, day of week and time of shift. Driving with closed windows significantly reduced exposures and is a simple behaviour change drivers could implement. Our results highlight strategies by which employers and local policy makers can reduce professional drivers’ exposure to traffic-related air pollution.

Journal article

Selley L, Lammers A, Le Guennec A, Pirhadi M, Sioutas C, Janssen N, Maitland-Van der Zee AH, Mudway I, Cassee Fet al., 2021, Alterations to the urinary metabolome following semi-controlled short exposures to ultrafine particles at a major airport, INTERNATIONAL JOURNAL OF HYGIENE AND ENVIRONMENTAL HEALTH, Vol: 237, ISSN: 1438-4639

Journal article

Peters R, Mudway I, Booth A, Peters J, Anstey KJet al., 2021, Putting Fine Particulate Matter and Dementia in the Wider Context of Noncommunicable Disease: Where are We Now and What Should We Do Next: A Systematic Review, NEUROEPIDEMIOLOGY, Vol: 55, Pages: 253-265, ISSN: 0251-5350

Journal article

Unosson J, Kabele M, Boman C, Nystrom R, Sadiktsis I, Westerholm R, Mudway IS, Purdie E, Raftis J, Miller MR, Mills NL, Newby DE, Blomberg A, Sandstrom T, Bosson JAet al., 2021, Acute cardiovascular effects of controlled exposure to dilute Petrodiesel and biodiesel exhaust in healthy volunteers: a crossover study, PARTICLE AND FIBRE TOXICOLOGY, Vol: 18, ISSN: 1743-8977

Journal article

Enlo-Scott Z, Backstrom E, Mudway I, Forbes Bet al., 2021, Drug metabolism in the lungs: opportunities for optimising inhaled medicines, EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, Vol: 17, Pages: 611-625, ISSN: 1742-5255

Journal article

Karamanos A, Mudway I, Kelly F, Beevers SD, Dajnak D, Elia C, Cruickshank JK, Lu Y, Tandon S, Enayat E, Dazzan P, Maynard M, Harding Set al., 2021, Air pollution and trajectories of adolescent conduct problems: the roles of ethnicity and racism; evidence from the DASH longitudinal study, Social Psychiatry and Psychiatric Epidemiology: the international journal for research in social and genetic epidemiology and mental health services, Vol: 56, Pages: 2029-2039, ISSN: 0933-7954

PurposeNo known UK empirical research has investigated prospective associations between ambient air pollutants and conduct problems in adolescence. Ethnic minority children are disproportionately exposed to structural factors that could moderate any observed relationships. This prospective study examined whether exposure to PM2.5 and NO2 concentrations is associated with conduct problems in adolescence, and whether racism or ethnicity moderate such associations.MethodsLongitudinal associations between annual mean estimated PM2.5 and NO2 concentrations at the residential address and trajectories of conduct problems, and the potential influence of racism and ethnicity were examined school-based sample of 4775 participants (2002–2003 to 2005–2006) in London, using growth curve models.ResultsOverall, in the fully adjusted model, exposure to lower concentrations of PM2.5 and NO2 was associated with a decrease in conduct problems during adolescence, while exposure to higher concentrations was associated with a flattened trajectory of conduct symptoms. Racism amplified the effect of PM2.5 (β = 0.05 (95% CI 0.01 to 0.10, p < 0.01)) on adolescent trajectories of conduct problems over time. At higher concentrations of PM2.5, there was a divergence of trajectories of adolescent conduct problems between ethnic minority groups, with White British and Black Caribbean adolescents experiencing an increase in conduct problems over time.ConclusionThese findings suggest that the intersections between air pollution, ethnicity, and racism are important influences on the development of conduct problems in adolescence.

Journal article

Bos B, Lim S, Hedges M, Molden N, Boyle S, Mudway I, Barratt Bet al., 2021, Taxi drivers' exposure to black carbon and nitrogen dioxide in electric and diesel vehicles: A case study in London, ENVIRONMENTAL RESEARCH, Vol: 195, ISSN: 0013-9351

Journal article

Pfeffer PE, Mudway IS, Grigg J, 2021, Air Pollution and Asthma Mechanisms of Harm and Considerations for Clinical Interventions, CHEST, Vol: 159, Pages: 1346-1355, ISSN: 0012-3692

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01050769&limit=30&person=true