Imperial College London

DrIainStaffell

Faculty of Natural SciencesCentre for Environmental Policy

Senior Lecturer in Sustainable Energy
 
 
 
//

Contact

 

+44 (0)20 7594 9570i.staffell

 
 
//

Location

 

202Weeks BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

107 results found

Xie JJ, Martin M, Rogelj J, Staffell Iet al., 2023, Decarbonizing the US power system presents diverse challenges and opportunities in the changing employment landscape

<jats:title>Abstract</jats:title> <jats:p>The transition towards a low-carbon power system presents immense challenges and opportunities to the workforce. Studies of the energy transition’s regional and distributional employment impacts are mainly qualitative or disconnected from prevailing energy modeling scenarios. Here, we couple a power sector optimization model, an employment impact model, and demographic databases to further understand the state-level job characteristics and societal implications in the US. Major fossil fuel producers risk job losses even without new emission reduction policies, requiring the reskilling of up to 30% of the current workforce. The results highlight the need for investments in human capital and a supply chain restructuring. Blue-collar workers are crucial to delivering the transition. Expanding renewable energy could improve job opportunities for women in states dependent on fossil fuels, but not enough to disrupt the national status quo. This work sets a new quantitative perspective to inform proactive local Just Transition policymaking.</jats:p>

Journal article

Halttunen K, Staffell I, Slade R, 2022, Climate change and the future of the oil industry: perspectives from the front line of the transition, 12th International Sustainability Transitions Conference. Mainstreaming sustainability transitions: From research towards impact

Conference paper

Staffell I, Pfenninger S, Johnson N, 2022, Satellite weather data accurately models global space heating and cooling demand

<jats:title>Abstract</jats:title> <jats:p>Various tools exist for modelling the temporal and spatial impacts of weather on energy supply, yet few consider these impacts on energy demand for heating and cooling in the same universal way. Available models are limited in their applicability or validate poorly against measured energy consumption. Here, we present a model of hourly heating and cooling demand that can be applied globally at all scales and customised to specific contexts. We validate it against energy consumption from ~5,000 individual buildings and 43 nations / regions spanning four continents. We then assess two contemporary case studies. Firstly, we show that ‘turning down the thermostat’ by 1°C across all buildings would reduce Europe’s reliance on Russian natural gas imports by one-fifth, and allow the US to increase gas exports by one-tenth. Secondly, we show that providing a ‘comfortable’ standard of space cooling globally would require nearly half of current global electricity demand. The model and underlying data are available freely on an interactive platform to aid further research in this area.</jats:p>

Journal article

Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schaefer Het al., 2022, Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments, Chemical Society Reviews, Vol: 51, Pages: 4583-4762, ISSN: 0306-0012

Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.

Journal article

Jansen M, Duffy C, Green T, Staffell Iet al., 2022, Island in the Sea: The prospects and impacts of an offshore wind power hub in the North Sea, Advances in Applied Energy, Vol: 6, Pages: 1-14, ISSN: 2666-7924

Europe's offshore wind capacity is increasing rapidly, with larger turbines installed further from shore. TenneT proposed an innovative concept, the North Sea Wind Power Hub, in which several farms are connected to an artificial island which has interconnection to surrounding countries. This aims to reduce overall costs, but studies have so far evaluated hypothetical designs rather than the specific system operators’ proposal, and focused primarily on construction costs rather than ongoing system-wide impacts. Here we develop a bottom-up capital cost estimate to compare the Power Hub with conventional point-to-point connection for offshore wind farms. We quantify its consequential impacts on regional electricity prices, the value of wind generation, fossil fuel generation and carbon emissions in 2030 using a pan-European electricity market model. We find that the Power Hub is cheaper if more than 10 GW of wind is built, as the avoided cost of multiple converter platforms offsets the cost of building an artificial island. It has profound impacts on electricity markets across Europe, especially in Britain and Ireland if they gain more interconnection to continental Europe. This impacts the economic viability of wind and gas power stations particularly, and saves 10Mt CO2 per year through reduced curtailment.

Journal article

Jansen M, Beiter P, Riepin I, Musgens F, Guajardo-Fajardo VJ, Staffell I, Bulder B, Kitzing Let al., 2022, Policy choices and outcomes for offshore wind auctions globally, Energy Policy, Vol: 167, Pages: 1-17, ISSN: 0301-4215

Offshore wind energy is rapidly expanding, facilitated largely through auctions run by governments. We provide a detailed quantified overview of utilised auction schemes, including geographical spread, volumes, results, and design specifications. Our comprehensive global dataset reveals heterogeneous designs. Although most auction designs provide some form of revenue stabilisation, their specific instrument choices vary and include feed-in tariffs, one-sided and two-sided contracts for difference, mandated power purchase agreements, and mandated renewable energy certificates.We review the schemes used in all eight major offshore wind jurisdictions across Europe, Asia, and North America and evaluate bids in their jurisdictional context. We analyse cost competitiveness, likelihood of timely construction, occurrence of strategic bidding, and identify jurisdictional aspects that might have influenced auction results. We find that auctions are embedded within their respective regulatory and market design context, and are remarkably diverse, though with regional similarities. Auctions in each jurisdiction have evolved and tend to become more exposed to market price risks over time. Less mature markets are more prone to make use of lower-risk designs. Still, some form of revenue stabilisation is employed for all auctioned offshore wind energy farms analysed here, regardless of the specific policy choices. Our data confirm a coincidence of declining costs and growing diffusion of auction regimes.

Journal article

Halttunen K, Slade R, Staffell I, 2022, What if we never run out of oil? From certainty of “peak oil” to “peak demand”, Energy Research and Social Science, Vol: 85, Pages: 1-6, ISSN: 2214-6296

The COVID-19 pandemic sent the oil industry into turmoil on a scale not seen since the 1970s. While the sector appears to be recovering, questions remain about the extent to which the pandemic has offered a glimpse into the possible future of the industry. This future is critical to the success of climate change mitigation, which requires significant cuts to the carbon dioxide emissions from using oil for energy. Therefore, it makes sense to consider future scenarios in which global oil demand peaks and then declines alongside scenarios of continued demand growth. This is a significant departure from historical development of oil demand and the dominant discussion of many decades about “peak oil” and the fear of demand outstripping readily available supply. The implications of peaking oil demand would be massive, not only for the oil industry but also for society as whole. There is not enough understanding of what the impacts would be, or how to prepare for them. The research community needs to take a clear-eyed view of potential futures of oil, which includes considering scenarios in which demand goes into long-term decline.

Journal article

McKenna R, Pfenninger S, Heinrichs H, Schmidt J, Staffell I, Bauer C, Gruber K, Hahmann AN, Jansen M, Klingler M, Landwehr N, Larsén XG, Lilliestam J, Pickering B, Robinius M, Tröndle T, Turkovska O, Wehrle S, Weinand JM, Wohland Jet al., 2022, High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs, Renewable Energy, Vol: 182, Pages: 659-684, ISSN: 0960-1481

The rapid uptake of renewable energy technologies in recent decades has increased the demand of energy researchers, policymakers and energy planners for reliable data on the spatial distribution of their costs and potentials. For onshore wind energy this has resulted in an active research field devoted to analysing these resources for regions, countries or globally. A particular thread of this research attempts to go beyond purely technical or spatial restrictions and determine the realistic, feasible or actual potential for wind energy. Motivated by these developments, this paper reviews methods and assumptions for analysing geographical, technical, economic and, finally, feasible onshore wind potentials. We address each of these potentials in turn, including aspects related to land eligibility criteria, energy meteorology, and technical developments of wind turbine characteristics such as power density, specific rotor power and spacing aspects. Economic aspects of potential assessments are central to future deployment and are discussed on a turbine and system level covering levelized costs depending on locations, and the system integration costs which are often overlooked in such analyses. Non-technical approaches include scenicness assessments of the landscape, constraints due to regulation or public opposition, expert and stakeholder workshops, willingness to pay/accept elicitations and socioeconomic cost-benefit studies. For each of these different potential estimations, the state of the art is critically discussed, with an attempt to derive best practice recommendations and highlight avenues for future research.

Journal article

Biancardi A, Di Castelnuovo M, Staffell I, 2021, A framework to evaluate how European Transmission System Operators approach innovation, ENERGY POLICY, Vol: 158, ISSN: 0301-4215

Journal article

Green R, Staffell I, 2021, The contribution of taxes, subsidies, and regulations to British electricity decarbonization, Joule, Vol: 5, Pages: 2625-2645, ISSN: 2542-4351

Great Britain’s carbon emissions from electricity generation fell two-thirds between 2012 and 2019, providing an important example for other nations. This rapid transition was driven by a complex interplay of policies and events: subsidized investment in renewable generation, regulation-driven closure of coal power stations, rising carbon prices, and energy efficiency measures. Previous studies ignore the interactions of these simultaneous measures with each other and with exogenous changes to fuel prices and the weather. Here, we use Shapley values—a concept from game theory—to disentangle these and precisely attribute outcomes (changes to CO2 emissions, electricity prices, and fossil fuel consumption) to individual drivers. We find the effectiveness of each driver remained stable despite the broad transformation of the power system. The four main drivers each saved 19–29 MtCO2 per year in 2019, reinforcing the view that there is no “silver bullet” and that a multi-faceted approach to deep decarbonization is essential.

Journal article

Trask A, Wills K, Green T, Staffell I, Auvermann O, Coutellier Q, Muuls M, Hardy J, Morales Rodriguez D, Martin R, Sivakumar A, Pawlak J, Faghih Imani SA, Strbac G, Badesa Bernardo Let al., 2021, Impacts of COVID-19 on the Energy System, Impacts of COVID-19 on the Energy System

This Briefing Paper explores the impactthe COVID-19 pandemic had on the UK’senergy sector over the course of thefirst government-mandated nationallockdown that began on 23 March 2020.Research from several aspects of theIntegrated Development of Low-carbonEnergy Systems (IDLES) programme atImperial College London is presented inone overarching paper. The main aim isto determine what lessons can be learntfrom that lockdown period, given theunique set of challenges it presented inour daily lives and the changes it broughtabout in energy demand, supply, anduse. Valuable insights are gained intohow working-from-home policies,electric vehicles, and low-carbon gridscan be implemented, incentivised, andmanaged effectively.

Report

Ludlow J, Jalil-Vega F, Rivera XS, Garrido RA, Hawkes A, Staffell I, Balcombe Pet al., 2021, Organic waste to energy: Resource potential and barriers to uptake in Chile, SUSTAINABLE PRODUCTION AND CONSUMPTION, Vol: 28, Pages: 1522-1537, ISSN: 2352-5509

Journal article

Balcombe P, Staffell I, Kerdan IG, Speirs JF, Brandon NP, Hawkes ADet al., 2021, How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis, Energy, Vol: 227, Pages: 1-12, ISSN: 0360-5442

International shipping faces strong challenges with new legally binding air quality regulations and a 50% decarbonisation target by 2050. Liquefied natural gas (LNG) is a widely used alternative to liquid fossil fuels, but methane emissions reduce its overall climate benefit. This study utilises new emissions measurements and supply-chain data to conduct a comprehensive environmental life cycle and cost assessment of LNG as a shipping fuel, compared to heavy fuel oil (HFO), marine diesel oil (MDO), methanol and prospective renewable fuels (hydrogen, ammonia, biogas and biomethanol). LNG gives improved air quality impacts, reduced fuel costs and moderate climate benefits compared to liquid fossil fuels, but with large variation across different LNG engine types. Methane slip from some engines is unacceptably high, whereas the best performing LNG engine offers up to 28% reduction in global warming potential when combined with the best-case LNG supply chain. Total methane emissions must be reduced to 0.8–1.6% to ensure climate benefit is realised across all timescales compared to current liquid fuels. However, it is no longer acceptable to merely match incumbent fuels; progress must be made towards decarbonisation targets. With methane emissions reduced to 0.5% of throughput, energy efficiency must increase 35% to meet a 50% decarbonisation target.

Journal article

Auger T, Truby J, Balcombe P, Staffell Iet al., 2021, The future of coal investment, trade, and stranded assets, Joule, Vol: 5, Pages: 1462-1484, ISSN: 2542-4351

Coal is at a crossroads, with divestment and phase-out in the West countered by the surging growth throughout Asia. Global energy scenarios suggest that coal consumption could halve over the next decade, but the business and geopolitical implications of this profound shift remain underexplored. We investigate coal markets to 2040 using a perfect competition techno-economic model. In a well-below-2°C scenario, Europe, North America, and Australia suffer from over-capacity, with one-third of today’s mines becoming stranded assets. New mines are needed to offset retirements, but a new commodity cycle in the 2030s can be avoided. Coal prices decline as only the most competitive mines survive, and trade volumes fall to give more insular national markets. Regions stand to gain or lose tens of billions of dollars per year from reducing import bills or export revenues. Understanding and preparing for these changes could ease the transition away from coal following 150 years of dominance.

Journal article

Halttunen K, Slade R, Staffell I, 2021, The future of the oil industry in a "Well Below 2 Degree" world: a company-level agent-based simulation, Energy, COVID, and Climate Change, 1st IAEE Online Conference, Publisher: IAEE

Conference paper

Johnson NJ, Gross R, Staffell I, 2021, Stabilisation wedges: measuring progress towards transforming the global energy and land use systems, Environmental Research Letters, Vol: 16, ISSN: 1748-9326

15 years ago, Pacala and Socolow argued that global carbon emissions could be stabilised by mid-century using a portfolio of existing mitigation strategies. We assess historic progress for each of their proposed mitigation strategies and convert this into the unit of 'wedges'. We show that the world is on track to achieve 1.5 ± 0.9 wedges relative to seven required to stabilise emissions, or 14 required to achieve net-zero emissions by mid-century. Substantial progress has been made in some domains that are not widely recognised (improving vehicle efficiency and declining vehicle use); yet this is tempered by negligible or even negative progress in many others (particularly tropical tree cover loss in Asia and Africa). By representing global decarbonisation efforts using the conceptually simple unit of wedges, this study helps a broader audience to understand progress to date and engage with the need for much greater effort over the coming decades.

Journal article

Mehlig D, ApSimon H, Staffell I, 2021, The impact of the UK’s COVID-19 lockdowns on energy demand and emissions, Environmental Research Letters, Vol: 16, Pages: 1-9, ISSN: 1748-9326

Around the world, efforts to contain the COVID-19 pandemic have profoundly changed human activity, which may have improved air quality and reduced greenhouse gas emissions. We investigated the impact of the pandemic on energy demand and subsequent emissions from electricity and gas throughout 2020 in the UK. The daily pattern of electricity demand changed in both lockdowns, with weekday demand shifting to that of a typical pre-pandemic weekend. Energy demand in 2020 was modelled to reveal the impact of the weather and the pandemic. The first lockdown reduced demand by 15.6% for electricity and 12.0% for commercial gas, whereas the second lockdown produced reductions less than half. Domestic gas demand did not change during the first lockdown, but increased by 6.1% in the second, likely due to increased domestic heat demand. The changes in demand for gas resulted in little change to overall gas consumption emissions during the pandemic. For electricity, large emission reductions occurred during the two lockdowns: up to 22% for CO2, 47% for NO¬x ¬, and 29% for PM2.5. Yet, the largest CO2 emission reduction for electricity in 2020 (25%) occurred before the pandemic, which happened during a warm and stormy spell with exceptional wind generation. These observations suggest that future similar changes in activity may result in little change for gas demand and emissions. For electricity, emission reductions through changes in energy demand are made possible by the generation mix. To enable further emission reductions in the future, the generation mix should continue to decarbonise. This will yield emission reductions in both times of lowered energy demand, but more importantly, during times of high renewable output.

Journal article

Gholami MB, Poletti S, Staffell I, 2021, Wind, rain, fire and sun: Towards zero carbon electricity for New Zealand, Energy Policy, Vol: 150, Pages: 112109-112109, ISSN: 0301-4215

Journal article

Green R, Staffell I, 2021, The contribution of taxes, subsidies and regulations to British electricity decarbonisation, Publisher: Elsevier

Great Britain’s carbon emissions from electricity generation fell by two-thirds between 2012 and 2019, providing an important example for other nations. This rapid transition was driven by a complex interplay of policies and events: investment in renewable generation, closure of coal power stations, raising carbon prices and energy efficiency measures. Previous studies of the impact of these simultaneous individual measures miss their interactions with each other and with exogenous changes in fuel prices and the weather. Here we use Shapley values, a concept from cooperative game theory, to disentangle these and precisely attribute outcomes (CO2 saved, changes to electricity prices and fossil fuel consumption) to individual drivers. We find the effectiveness of each driver remained stable despite the transformation seen over the 7 years we study. The four main drivers each saved 19–29 MtCO2 per year in 2019, reinforcing the view that there is no ‘silver bullet’, and a multi-faceted approach to deep decarbonisation is essential.

Working paper

Halttunen K, Staffell I, Slade R, Green R, Saint-Drenan Y-M, Jansen Met al., 2020, Global assessment of the merit-order effect and revenue cannibalisation for variable renewable energy, Publisher: Elsevier

The rapid growth of wind and solar power has been a major driver for decarbonisation worldwide. They tend to reduce wholesale electricity prices, both the time-weighted average (the merit‑order effect) and their own output-weighted average (price cannibalisation). Whilst these effects have been widely observed, most previous studies focus on single countries. Here, we compare 37 electricity markets across Europe, North America, Australia and Japan and explore variations between them.Merit-order and cannibalisation effects are observed in nearly all countries studied. However, only in Germany, Spain, Poland, Portugal, Denmark and California can renewable output explain more than 10% of variation in wholesale electricity prices. The global average merit‑order effect is €0.68±€0.54 /MWh per percentage point increase in variable renewable energy penetration, and this falls with higher penetration. Revenues captured by wind farms decrease by 0.23% (€0.16 /MWh) for each percentage point increase of wind penetration and by 1.94% (€0.90 /MWh) for solar PV.

Working paper

Saint-Drenan Y-M, Besseau R, Jansen M, Staffell I, Troccoli A, Dubus L, Schmidt J, Gruber K, Simões SG, Heier Set al., 2020, A parametric model for wind turbine power curves incorporating environmental conditions, Renewable Energy, Vol: 157, Pages: 754-768, ISSN: 0960-1481

A wind turbine’s power curve relates its power production to the wind speed it experiences. The typical shape of a power curve is well known and has been studied extensively. However, power curves of individual turbine models can vary widely from one another. This is due to both the technical features of the turbine (power density, cut-in and cut-out speeds, limits on rotational speed and aerodynamic efficiency), and environmental factors (turbulence intensity, air density, wind shear and wind veer). Data on individual power curves are often proprietary and only available through commercial databases. We therefore develop an open-source model for pitch regulated horizontal axis wind turbine which can generate the power curve of any turbine, adapted to the specific conditions of any site. This can employ one of six parametric models advanced in the literature, and accounts for the eleven variables mentioned above. The model is described, the impact of each technical and environmental feature is examined, and it is then validated against the manufacturer power curves of 91 turbine models. Versions of the model are made available in MATLAB, R and Python code for the community.

Journal article

Jansen M, Staffell I, Kitzing L, Quoilin S, Wiggelinkhuizen E, Bulder B, Riepin I, Muesgens Fet al., 2020, Offshore wind competitiveness in mature markets without subsidy, Nature Energy, Vol: 5, Pages: 614-622, ISSN: 2058-7546

Offshore wind energy development has been driven by government support schemes; however, recent cost reductions raise the prospect of offshore wind power becoming cheaper than conventional power generation. Many countries use auctions to provide financial support; however, differences in auction design make their results difficult to compare. Here, we harmonize the auction results from five countries based on their design features, showing that offshore wind power generation can be considered commercially competitive in mature markets. Between 2015 and 2019, the price paid for power from offshore wind farms across northern Europe fell by 11.9 ± 1.6% per year. The bids received in 2019 translate to an average price of €51 ± 3 MWh−1, and substantially different auction designs have received comparably low bids. The level of subsidy implied by the auction results depends on future power prices; however, projects in Germany and the Netherlands are already subsidy-free, and it appears likely that in 2019 the United Kingdom will have auctioned the world’s first negative-subsidy offshore wind farm.

Journal article

Kozarcanin S, Hanna R, Staffell I, Gross R, Andresen GBet al., 2020, Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe, Energy Policy, Vol: 140, Pages: 1-13, ISSN: 0301-4215

Residential demands for space heating and hot water account for 31% of the total European energy demand. Space heating is highly dependent on ambient conditions and susceptible to climate change. We adopt a techno-economic standpoint and assess the impact of climate change on decentralised heating demand and the cost-optimal mix of heat pump and gas boiler technologies. Temperature data with high spatial resolution from nine climate models implementing three Representative Concentration Pathways from IPCC are used to estimate climate induced changes in the European demand side for heating. The demand side is modelled by the proxy of heating-degree days. The supply side is modelled by using a screening curve approach to the economics of heat generation. We find that space heating demand decreases by about 16%, 24% and 42% in low, intermediate and extreme global warming scenarios. When considering historic weather data, we find a heterogeneous mix of technologies are cost-optimal, depending on the heating load factor (number of full-load hours per year). Increasing ambient temperatures toward the end-century improve the economic performance of heat pumps in all concentration pathways. Cost optimal technologies broadly correspond to heat markets and policies in Europe, with some exceptions.

Journal article

Le Varlet T, Schmidt O, Gambhir A, Few S, Staffell Iet al., 2020, Comparative life cycle assessment of lithium-ion battery chemistries for residential storage, Journal of Energy Storage, Vol: 28, ISSN: 2352-152X

Residential storage deployment is expected to grow dramatically over the coming decade. Several lithium-ion chemistries are employed, but the relative environmental impacts of manufacturing them is poorly understood. This study presents a cradle-to-gate life cycle assessment to quantify the environmental impact of five prominent lithium-ion chemistries, based on the specifications of 73 commercially-available battery modules used for residential applications. Three impact categories (global warming potential, cumulative energy demand and mineral resource scarcity) are analysed across two functional units (storage capacity and lifetime energy delivered). Most chemistries have embodied carbon footprints of around 200 kg CO2e per kWh of useable storage capacity, which corresponds to 43–84 g CO2e per kWh of lifetime energy delivered with daily cycling operation. Energy delivered on energy invested is also calculated at values of 2–4, which falls to 0.54–0.66 with the energy for charging included (cf. a round-trip efficiency of 82–89%). Environmental impact depends more on cycling frequency than chemistry choice, and none of the battery chemistries convincingly outperforms the others. Cells only constitute a third to a half of the environmental impact, which is comparable to the inverter. Routes to making residential lithium-ion battery systems more environmentally benign include reducing the reliance on cobalt, nickel and copper, increasing the specific useable energy, developing comprehensive recycling initiatives, and maximising the utilisation (cycle frequency) once in operation.

Journal article

Vinca A, Parkinson S, Byers E, Burek P, Khan Z, Krey V, Diuana FA, Wang Y, Ilyas A, Köberle AC, Staffell I, Pfenninger S, Muhammad A, Rowe A, Schaeffer R, Rao ND, Wada Y, Djilali N, Riahi Ket al., 2020, The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations, Geoscientific Model Development, Vol: 13, Pages: 1095-1121, ISSN: 1991-959X

The energy–water–land nexus represents a critical leverage future policies must draw upon to reduce trade-offs between sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints. Moreover, existing tools and data are not always made openly available or are implemented across disparate modeling platforms that can be difficult to link directly with modern scientific computing tools and databases. In this paper, we present the NExus Solutions Tool (NEST): a new open modeling platform that integrates multi-scale energy–water–land resource optimization with distributed hydrological modeling. The new approach provides insights into the vulnerability of water, energy and land resources to future socioeconomic and climatic change and how multi-sectoral policies, technological solutions and investments can improve the resilience and sustainability of transformation pathways while avoiding counterproductive interactions among sectors. NEST can be applied at different spatial and temporal resolutions, and is designed specifically to tap into the growing body of open-access geospatial data available through national inventories and the Earth system modeling community. A case study analysis of the Indus River basin in south Asia demonstrates the capability of the model to capture important interlinkages across system transformation pathways towards the United Nations' Sustainable Development Goals, including the intersections between local and regional transboundary policies and incremental investment costs from rapidly increasing regional consumption projected over the coming decades.

Journal article

Gardiner D, Schmidt O, Heptonstall P, Gross R, Staffell Iet al., 2020, Quantifying the impact of policy on the investment case for residential electricity storage in the UK, Journal of Energy Storage, Vol: 27, ISSN: 2352-152X

Electrical energy storage has a critical role in future energy systems, but deployment is constrained by high costs and barriers to ‘stacking’ multiple revenue streams. We analyse the effects of different policy measures and revenue stacking on the economics of residential electricity storage in the UK. We identify six policy interventions through industry interviews and quantify their impact using a techno-economic model of a 4kWh battery paired with a 4kW solar system. Without policy intervention, residential batteries are not currently financially viable in the UK. Policies that enable access to multiple revenue streams, rather than just maximising PV self-consumption, improve this proposition. Demand Load-Shifting and Peak Shaving respectively increase the net present value per unit of investment cost (NPV/Capex) by 30% and 9% respectively. Given projected reductions in storage costs, stacking these services brings forward the break even date for residential batteries by 9 years to 2024, and increases the effectiveness of policies that reduce upfront costs, suggesting that current policy is correctly focused on enabling revenue stacking. However, additional support is needed to accelerate deployment in the near term. Combining revenue stacking with a subsidy of £250 per kWh or zero-interest loans could make residential storage profitable by 2020.

Journal article

Geske J, Green R, Staffell I, 2020, Elecxit: the cost of bilaterally uncoupling British-EU Electricity Trade, Energy Economics, Vol: 85, Pages: 1-16, ISSN: 0140-9883

The UK's withdrawal from the European Union could mean that it leaves the EU's Internal Energy Market for electricity (Elecxit). This paper develops methods to study the longer-term consequences of this electricity market disintegration, especially the end of market coupling. Before European electricity markets were coupled, different market closing times forced traders to commit to cross-border trading volumes based on anticipated market prices. Interconnector capacity was often under-used, and power sometimes flowed from high- to low-price areas. A model of these market frictions is developed, empirically verified on 2009 data (before French and British market coupling) and applied to estimate the costs of market uncoupling in 2030. A less efficient market and the abandonment of some planned interconnectors would raise generation costs by €700 m a year (2%) compared to remaining in the Internal Energy Market. This result is sensitive to how the British and French electricity systems develop over the coming decades. Economic losses are four times greater (€2700 m a year) if France retains substantial nuclear capacity due to its low marginal costs. Conversely, losses are reduced by two-thirds if UK weakens its decarbonisation ambitions, as lower carbon prices subsidise British fossil fuel generation, allowing electricity prices to converge with those in France. A Hard Elecxit would make British prices rise in three of our four scenarios, while those in France would fall in all of them.

Journal article

Kittner N, Tsiropoulos I, Tarvydas D, Schmidt O, Staffell I, Kammen DMet al., 2020, Electric vehicles, TECHNOLOGICAL LEARNING IN THE TRANSITION TO A LOW-CARBON ENERGY SYSTEM: CONCEPTUAL ISSUES, EMPIRICAL FINDINGS, AND USE, IN ENERGY MODELING, Editors: Junginger, Louwen, Publisher: ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, Pages: 145-163, ISBN: 978-0-12-818762-3

Book chapter

Bosch J, Staffell I, Hawkes AD, 2019, Global levelised cost of electricity from offshore wind, Energy, Vol: 189, Pages: 116357-116357, ISSN: 0360-5442

There is strong agreement across the energy modelling community that wind energy will be a key route to mitigating carbon emissions in the electricity sector. This paper presents a Geospatial Information System methodology for estimating spatially-resolved levelised cost of electricity for offshore wind, globally. The principal spatial characteristics of capital costs are transmission distance (i.e. the distance to grid connection) and water depth, because of the disparate costs of turbine foundation technologies. High resolution capacity factors are estimated from a bottom-up estimation of global wind speeds calculated from several decades of wind speed data. A technology-rich description of fixed and floating foundation types allows the levelised cost of electricity to be calculated for 1 × 1 km grid cells, relative to location-specific annual energy production, and accounting for exclusion areas, array losses and turbine availability. These data can be used to assess the economically viable offshore wind energy potential, globally and on a country basis, and can serve as inputs to energy systems models.

Journal article

Tranberg B, Corradi O, Lajoie B, Gibon T, Staffell I, Andresen GBet al., 2019, Real-time carbon accounting method for the European electricity markets, Energy Strategy Reviews, Vol: 26, ISSN: 2211-467X

Electricity accounts for 25% of global greenhouse gas emissions. Reducing emissions related to electricity consumption requires accurate measurements readily available to consumers, regulators and investors. In this case study, we propose a new real-time consumption-based accounting approach based on flow tracing. This method traces power flows from producer to consumer thereby representing the underlying physics of the electricity system, in contrast to the traditional input-output models of carbon accounting. With this method we explore the hourly structure of electricity trade across Europe in 2017, and find substantial differences between production and consumption intensities. This emphasizes the importance of considering cross-border flows for increased transparency regarding carbon emission accounting of electricity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00743286&limit=30&person=true