Imperial College London

ProfessorIanAdcock

Faculty of MedicineNational Heart & Lung Institute

Professor of Respiratory Cell & Molecular Biology
 
 
 
//

Contact

 

+44 (0)20 7594 7840ian.adcock Website

 
 
//

Location

 

304Guy Scadding BuildingRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

1032 results found

Pham DD, Lee J-H, Kwon H-S, Song W-J, Cho YS, Kim H, Kwon J-W, Park S-Y, Kim S, Hur GY, Kim BK, Nam Y-H, Yang M-S, Kim M-Y, Kim S-H, Lee B-J, Lee T, Park SY, Kim M-H, Cho Y-J, Park C, Jung J-W, Park HK, Kim J-H, Moon J-Y, Adcock I, Bhavsar P, Chung KF, Kim T-Bet al., 2024, Prospective direct comparison of biologic treatments for severe eosinophilic asthma: Findings from the PRISM study., Ann Allergy Asthma Immunol, Vol: 132, Pages: 457-462.e2

BACKGROUND: Although various monoclonal antibodies have been used as add-on therapy for severe eosinophilic asthma (SEA), to the best of our knowledge, no direct head-to-head comparative study has evaluated their efficacy. OBJECTIVE: To compare the efficacy of reslizumab, mepolizumab, and dupilumab in patients with SEA. METHODS: This was a multicenter, prospective observational study in patients with SEA who had received 1 of these biologic agents for at least 6 months. Cox proportional hazard models were used to compare the risk of the first exacerbation event, adjusting for sputum or blood eosinophils and common asthma-related covariates. The annual exacerbation rate was analyzed using a negative binomial model, and a mixed-effect model was used to analyze changes in forced expiratory volume in 1 second and asthma control test score over time. RESULTS: A total of 141 patients with SEA were included in the analysis; 71 (50%) received dupilumab; 40 (28%) received reslizumab, and 30 (21%) received mepolizumab. During the 12-month follow-up, 27.5%, 43.3%, and 38.0% of patients in the reslizumab, mepolizumab, and dupilumab groups, respectively, experienced at least 1 exacerbation. However, after adjusting for confounding factors, the dupilumab and mepolizumab groups showed similar outcomes in time-to-first exacerbation, exacerbation rate, forced expiratory volume in 1 second, and asthma control test score to those of the reslizumab group. CONCLUSION: In patients with SEA, treatment with reslizumab, mepolizumab, and dupilumab resulted in comparable clinical outcomes within a 12-month period. TRIAL REGISTRATION: The cohort protocol was sanctioned by the Institutional Review Board of each study center (clinicaltrial.gov identifier NCT05164939).

Journal article

Burgess JK, Weiss DJ, Westergren-Thorsson G, Wigen J, Dean CH, Mumby S, Bush A, Adcock IMet al., 2024, Extracellular matrix as a driver of chronic lung diseases, American Journal of Respiratory Cell and Molecular Biology, Vol: 70, Pages: 239-246, ISSN: 1044-1549

The extracellular matrix (ECM) is not just a 3 dimensional scaffold that provides stable support for all cells in the lungs but is also an important component of chronic fibrotic airways, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, which controls structural and immune cell functions, drug responses, and which can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airways, vascular, and interstitial diseases including (i) compositional changes, (ii) structural and organizational changes, and (iii) mechanical changes -and how these impact on disease pathogenesis. Since altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. While novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.

Journal article

Weng J, Liu Q, Li C, Feng Y, Chang Q, Xie M, Wang X, Li M, Zhang H, Mao R, Zhang N, Yang X, Chung KF, Adcock IM, Huang Y, Li Fet al., 2024, TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury, Science of the Total Environment, Vol: 918, ISSN: 0048-9697

BACKGROUND: Transient receptor potential (TRP) ankyrin 1 (TRPA1) could mediate ozone-induced lung injury. Optic Atrophy 1 (OPA1) is one of the significant mitochondrial fusion proteins. Impaired mitochondrial fusion, resulting in mitochondrial dysfunction and ferroptosis, may drive the onset and progression of lung injury. In this study, we examined whether TRPA1 mediated ozone-induced bronchial epithelial cell and lung injury by activating PI3K/Akt with the involvement of OPA1, leading to ferroptosis. METHODS: Wild-type, TRPA1-knockout (KO) mice (C57BL/6 J background) and ferrostatin-1 (Fer-1)-pretreated mice were exposed to 2.5 ppm ozone for 3 h. Human bronchial epithelial (BEAS-2B) cells were treated with 1 ppm ozone for 3 h in the presence of TRPA1 inhibitor A967079 or TRPA1-knockdown (KD) as well as pharmacological modulators of PI3K/Akt-OPA1-ferroptosis. Transcriptome was used to screen and decipher the differential gene expressions and pathways. Oxidative stress, inflammation and ferroptosis were measured together with mitochondrial morphology, function and dynamics. RESULTS: Acute ozone exposure induced airway inflammation and airway hyperresponsiveness (AHR), reduced mitochondrial fusion, and enhanced ferroptosis in mice. Similarly, acute ozone exposure induced inflammatory responses, altered redox responses, abnormal mitochondrial structure and function, reduced mitochondrial fusion and enhanced ferroptosis in BEAS-2B cells. There were increased mitochondrial fusion, reduced inflammatory responses, decreased redox responses and ferroptosis in ozone-exposed TRPA1-KO mice and Fer-1-pretreated ozone-exposed mice. A967079 and TRPA1-KD enhanced OPA1 and prevented ferroptosis through the PI3K/Akt pathway in BEAS-2B cells. These in vitro results were further confirmed in pharmacological modulator experiments. CONCLUSION: Exposure to ozone induces mitochondrial dysfunction in human bronchial epithelial cells and mouse lungs by activating T

Journal article

Melén E, Faner R, Allinson JP, Bui D, Bush A, Custovic A, Garcia-Aymerich J, Guerra S, Breyer-Kohansal R, Hallberg J, Lahousse L, Martinez FD, Merid SK, Powell P, Pinnock H, Stanojevic S, Vanfleteren LEGW, Wang G, Dharmage SC, Wedzicha J, Agusti A, CADSET Investigatorset al., 2024, Lung-function trajectories: relevance and implementation in clinical practice, The Lancet, ISSN: 0140-6736

Lung development starts in utero and continues during childhood through to adolescence, reaching its peak in early adulthood. This growth is followed by gradual decline due to physiological lung ageing. Lung-function development can be altered by several host and environmental factors during the life course. As a result, a range of lung-function trajectories exist in the population. Below average trajectories are associated with respiratory, cardiovascular, metabolic, and mental health comorbidities, as well as with premature death. This Review presents progressive research into lung-function trajectories and assists the implementation of this knowledge in clinical practice as an innovative approach to detect poor lung health early, monitor respiratory disease progression, and promote lung health. Specifically, we propose that, similar to paediatric height and weight charts used globally to monitor children's growth, lung-function charts could be used for both children and adults to monitor lung health status across the life course. To achieve this proposal, we introduce our free online Lung Function Tracker tool. Finally, we discuss challenges and opportunities for effective implementation of the trajectory concept at population level and outline an agenda for crucial research needed to support such implementation.

Journal article

Abdolmohammadi-Vahid S, Baradaran B, Adcock I, Mortaz Eet al., 2024, Immune checkpoint inhibitors and SARS-CoV2 infection, Frontiers in Immunology, ISSN: 1664-3224

Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients incorporating a critical assessment of the clinical trials performed to date.

Journal article

Pham DD, Lee J-H, Kwon H-S, Song W-J, Cho YS, Kim H, Kwon J-W, Park S-Y, Kim S, Hur GY, Kim BK, Nam Y-H, Yang M-S, Kim M-Y, Kim S-H, Lee B-J, Lee T, Park S-Y, Kim M-H, Cho Y-J, Park C, Jung J-W, Park HK, Kim J-H, Moon J-Y, Bhavsar P, Adcock I, Chung KF, Kim T-Bet al., 2024, Predictors of Early and Late Lung Function Improvement in Severe Eosinophilic Asthma on Type2-Biologics in the PRISM Study., Lung, Vol: 202, Pages: 41-51

BACKGROUND: The determinants linked to the short- and long-term improvement in lung function in patients with severe eosinophilic asthma (SEA) on biological treatment (BioT) remain elusive. OBJECTIVE: We sought to identify the predictors of early and late lung function improvement in patients with SEA after BioT. METHODS: 140 adult patients with SEA who received mepolizumab, dupilumab, or reslizumab were followed up for 6 months to evaluate improvement in forced expiratory volume in one second (FEV1). Logistic regression was used to determine the association between potential prognostic factors and improved lung function at 1 and 6 months of treatment. RESULTS: More than a third of patients with SEA using BioT showed early and sustained improvements in FEV1 after 1 month. A significant association was found between low baseline FEV1 and high blood eosinophil count and sustained FEV1 improvement after 1 month (0.54 [0.37-0.79] and 1.88 [1.28-2.97] odds ratios and 95% confidence interval, respectively). Meanwhile, among patients who did not experience FEV1 improvement after 1 month, 39% exhibited improvement at 6 months follow-up. A high ACT score measured at this visit was the most reliable predictor of late response after 6 months of treatment (OR and 95% CI 1.75 [1.09-2.98]). CONCLUSION: Factors predicting the efficacy of biological agents that improve lung function in SEA vary according to the stage of response.

Journal article

Kalaiarasan G, Kumar P, Tomson M, Zavala-Reyes JC, Porter AE, Young G, Sephton MA, Abubakar-Waziri H, Pain CC, Adcock IM, Mumby S, Dilliway C, Fang F, Arcucci R, Chung KFet al., 2024, Particle number size distribution in three different microenvironments of London, Atmosphere, Vol: 15, ISSN: 2073-4433

We estimated the particle number distributions (PNDs), particle number concentrations (PNCs), physicochemical characteristics, meteorological effects, and respiratory deposition doses (RDD) in the human respiratory tract for three different particle modes: nucleation (N6–30), accumulation (N30–300), and coarse (N300–10,000) modes. This study was conducted in three different microenvironments (MEs) in London (indoor, IN; traffic intersection, TI; park, PK) measuring particles in the range of 6 nm–10,000 nm using an electrical low-pressure impactor (ELPI+). Mean PNCs were 1.68 ± 1.03 × 104 #cm−3, 7.00 ± 18.96 × 104 #cm−3, and 0.76 ± 0.95 × 104 #cm−3 at IN, TI, and PK, respectively. The PNDs were high for nucleation-mode particles at the TI site, especially during peak traffic hours. Wind speeds ranging from 0 to 6 ms−1 exhibit higher PNCs for nucleation- and accumulation-mode particles at TI and PK sites. Physicochemical characterisation shows trace metals, including Fe, O, and inorganic elements, that were embedded in a matrix of organic material in some samples. Alveolar RDD was higher for the nucleation and accumulation modes than the coarse-mode particles. The chemical signatures from the physicochemical characterisation indicate the varied sources at different MEs. These findings enhance our understanding of the different particle profiles at each ME and should help devise ways of reducing personal exposure at each ME.

Journal article

Asamoah K, Chung K, Bodinier B, Dahlen S-E, Djukanovic R, Bhavsar P, Adcock I, Vuckovic D, Chadeau Met al., 2024, Proteomic signatures of eosinophilic and neutrophilic asthma from serum and sputum, EBioMedicine, Vol: 99, ISSN: 2352-3964

BackgroundEosinophilic and neutrophilic asthma defined by high levels of blood and sputum eosinophils and neutrophils exemplifies the inflammatory heterogeneity of asthma, particularly severe asthma. We analysed the serum and sputum proteome to identify biomarkers jointly associated with these different phenotypes.MethodsProteomic profiles (N = 1129 proteins) were assayed in sputum (n = 182) and serum (n = 574) from two cohorts (U-BIOPRED and ADEPT) of mild-moderate and severe asthma by SOMAscan. Using least absolute shrinkage and selection operator (LASSO)-penalised logistic regression in a stability selection framework, we sought sparse sets of proteins associated with either eosinophilic or neutrophilic asthma with and without adjustment for established clinical factors including oral corticosteroid use and forced expiratory volume.FindingsWe identified 13 serum proteins associated with eosinophilic asthma, including 7 (PAPP-A, TARC/CCL17, ALT/GPT, IgE, CCL28, CO8A1, and IL5-Rα) that were stably selected while adjusting for clinical factors yielding an AUC of 0.84 (95% CI: 0.83–0.84) compared to 0.62 (95% CI: 0.61–0.63) for clinical factors only. Sputum protein analysis selected only PAPP-A (AUC = 0.81 [95% CI: 0.80–0.81]). 12 serum proteins were associated with neutrophilic asthma, of which 5 (MMP-9, EDAR, GIIE/PLA2G2E, IL-1-R4/IL1RL1, and Elafin) complemented clinical factors increasing the AUC from 0.63 (95% CI: 0.58–0.67) for the model with clinical factors only to 0.89 (95% CI: 0.89–0.90). Our model did not select any sputum proteins associated with neutrophilic status.InterpretationTargeted serum proteomic profiles are a non-invasive and scalable approach for subtyping of neutrophilic and eosinophilic asthma and for future functional understanding of these phenotypes.FundingU-BIOPRED has received funding from the Innovative Medicines Initiative (IMI) Joint Undertaking under grant agreement no. 115010, resources of which a

Journal article

Li C-X, Chen H, Zounemat-Kermani N, Adcock IM, Sköld CM, Zhou M, Wheelock ÅM, U-BIOPRED study groupet al., 2024, Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage, Briefings in Bioinformatics, Vol: 25, ISSN: 1467-5463

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).

Journal article

Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz-Gracia I, Knol EF, Jesenak M, Levi-Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato Cet al., 2023, Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology., Allergy

The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for st

Journal article

Li C, Liu Q, Chang Q, Xie M, Weng J, Wang X, Li M, Chen J, Huang Y, Yang X, Wang K, Zhang N, Chung KF, Adcock IM, Zhang H, Li Fet al., 2023, Role of mitochondrial fusion proteins MFN2 and OPA1 on lung cellular senescence in chronic obstructive pulmonary disease, Respiratory Research, Vol: 24, ISSN: 1465-9921

BACKGROUND: Mitochondrial dysfunction and lung cellular senescence are significant features involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) stands as the primary contributing factor to COPD. This study examined mitochondrial dynamics, mitophagy and lung cellular senescence in COPD patients and investigated the effects of modulation of mitochondrial fusion [mitofusin2 (MFN2) and Optic atrophy 1 (OPA1)] on CS extract (CSE)-induced lung cellular senescence. METHODS: Senescence-associated secretory phenotype (SASP) component mRNAs (IL-1β, IL-6, CXCL1 and CXCL8), mitochondrial morphology, mitophagy and mitochondria-related proteins (including phosphorylated-DRP1(p-DRP1), DRP1, MFF, MNF2, OPA1, PINK1, PARK2, SQSTM1/p62 and LC3b) and senescence-related proteins (including P16, H2A.X and Klotho) were measured in lung tissues or primary alveolar type II (ATII) cells of non-smokers, smokers and COPD patients. Alveolar epithelial (A549) cells were exposed to CSE with either pharmacologic inducer (leflunomide and BGP15) or genetic induction of MFN2 and OPA1 respectively. RESULTS: There were increases in mitochondrial number, and decreases in mitochondrial size and activity in lung tissues from COPD patients. SASP-related mRNAs, DRP1 phosphorylation, DRP1, MFF, PARK2, SQSTM1/p62, LC3B II/LC3B I, P16 and H2A.X protein levels were increased, while MFN2, OPA1, PINK1 and Klotho protein levels were decreased in lung tissues from COPD patients. Some similar results were identified in primary ATII cells of COPD patients. CSE induced increases in oxidative stress, SASP-related mRNAs, mitochondrial damage and dysfunction, mitophagy and cellular senescence in A549 cells, which were ameliorated by both pharmacological inducers and genetic overexpression of MFN2 and OPA1. CONCLUSIONS: Impaired mitochondrial fusion, enhanced mitophagy and lung cellular senescence are observed in the lung of COPD patients. Up-regulation of MFN2 and OPA1

Journal article

Shim J-S, Kim H, Kwon J-W, Park S-Y, Kim S, Kim B-K, Nam Y-H, Yang M-S, Kim M-Y, Kim S-H, Lee B-J, Lee T, Kim S-H, Park SY, Cho Y-J, Park CS, Jung J-W, Park H-K, Kim J-H, Choi J-H, Moon J-Y, Adcock I, Chung KF, Kim M-H, Kim T-B, Precision Intervention in Severe Asthma PRISM study investigatorsaet al., 2023, A comparison of treatment response to biologics in asthma-COPD overlap and pure asthma: Findings from the PRISM study, The World Allergy Organization Journal, Vol: 16, ISSN: 1939-4551

BACKGROUND: Despite the increasing use of biologics in severe asthma, there is limited research on their use in asthma-chronic obstructive pulmonary disease overlap (ACO). We compared real-world treatment responses to biologics in ACO and asthma. METHODS: We conducted a multicenter, retrospective, cohort study using data from the Precision Medicine Intervention in Severe Asthma (PRISM). ACO was defined as post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) <0.7 and a smoking history of >10 pack-years. Physicians selected biologics (omalizumab, mepolizumab, reslizumab, benralizumab, and dupilumab) based on each United States Food & Drug Administration (FDA) approval criteria. RESULTS: After six-month treatment with biologics, both patients with ACO (N = 13) and asthma (N = 81) showed positive responses in FEV1 (10.69 ± 17.17 vs. 11.25 ± 12.87 %, P = 0.652), Asthma Control Test score (3.33 ± 5.47 vs. 5.39 ± 5.42, P = 0.290), oral corticosteroid use (-117.50 ± 94.38 vs. -115.06 ± 456.85 mg, P = 0.688), fractional exhaled nitric oxide levels (-18.62 ± 24.68 vs. -14.66 ± 45.35 ppb, P = 0.415), sputum eosinophils (-3.40 ± 10.60 vs. -14.48 ± 24.01 %, P = 0.065), blood eosinophils (-36.47 ± 517.02 vs. -363.22 ± 1294.59, P = 0.013), and exacerbation frequency (-3.07 ± 4.42 vs. -3.19 ± 5.11, P = 0.943). The odds ratio for exacerbation and time-to-first exacerbation showed no significant difference after full adjustments, and subgroup analysis according to biologic type was also showed similar results. CONCLUSIONS: Biologics treatment response patterns in p

Journal article

Faiz A, Mahbub RM, Boedijono FS, Tomassen MI, Kooistra W, Timens W, Nawijn M, Hansbro PM, Johansen MD, Pouwels SD, Heijink IH, Massip F, de Biase MS, Schwarz RF, Adcock IM, Chung KF, van der Does A, Hiemstra PS, Goulaouic H, Xing H, Abdulai R, de Rinaldis E, Cunoosamy D, Harel S, Lederer D, Nivens MC, Wark PA, Kerstjens HAM, Hylkema MN, Brandsma C-A, van den Berge Met al., 2023, IL-33 expression is lower in current smokers at both transcriptomic and protein levels, American Journal of Respiratory and Critical Care Medicine, Vol: 208, Pages: 1075-1087, ISSN: 1073-449X

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.

Journal article

Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PMet al., 2023, TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase, Nature Communications, Vol: 14, ISSN: 2041-1723

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.

Journal article

Yao X, Adcock IM, Mumby S, 2023, A mechanistic insight into severe COPD: the nose as a surrogate for the airways, ERJ Open Research, Vol: 9, ISSN: 2312-0541

A severe COPD signature in bronchial and nasal epithelial cells reflects reduced tissue repair and ECM regulation https://bit.ly/476S3PJ.

Journal article

Versi A, Ivan FX, Abdel-Aziz MI, Bates S, Riley J, Baribaud F, Kermani NZ, Montuschi P, Dahlen S-E, Djukanovic R, Sterk P, Maitland-Van Der Zee AH, Chotirmall SH, Howarth P, Adcock IM, Chung KF, U-BIOPRED consortiumet al., 2023, Haemophilus influenzae and Moraxella catarrhalis in sputum of severe asthma with inflammasome and neutrophil activation, Allergy, Vol: 78, Pages: 2906-2920, ISSN: 0105-4538

BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and β-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.

Journal article

Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SIet al., 2023, Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types?, Am J Respir Cell Mol Biol, Vol: 69, Pages: 500-507

The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.

Journal article

Rynne J, Ortiz-Zapater E, Bagley DC, Zanin O, Doherty G, Kanabar V, Ward J, Jackson DJ, Parsons M, Rosenblatt J, Adcock IM, Martinez-Nunez RTet al., 2023, The RNA binding proteins ZFP36L1 and ZFP36L2 are dysregulated in airway epithelium in human and a murine model of asthma, Frontiers in Cell and Developmental Biology, Vol: 11, ISSN: 2296-634X

Introduction: Asthma is the most common chronic inflammatory disease of the airways. The airway epithelium is a key driver of the disease, and numerous studies have established genome-wide differences in mRNA expression between health and asthma. However, the underlying molecular mechanisms for such differences remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1 and ZFP36L2, and has essential roles in immune regulation by determining the stability and translation of myriad mRNAs encoding for inflammatory mediators. We investigated the expression and possible role of the tristetraprolin (TTP) family of RNA binding proteins (RBPs), poorly understood in asthma. Methods: We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2 mRNA in several publicly available asthma datasets, including single cell RNA-sequencing. We also interrogated the expression of known targets of these RBPs in asthma. We assessed the lung mRNA expression and cellular localization of Zfp36l1 and Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in human bronchial biopsies and performed rescue experiments in primary bronchial epithelium from patients with severe asthma. Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly downregulated in the airway epithelium of patients with very severe asthma in different cohorts (5 healthy vs. 8 severe asthma; 36 moderate asthma vs. 37 severe asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating several datasets allowed us to infer that mRNAs potentially targeted by these RBPs are increased in severe asthma. Zfp36l1 was downregulated in the lung of a mouse model of asthma, and immunostaining of ex vivo lung slices with a dual antibody demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway epithelium of an acute asthma mouse model, which was further enhanced in a chronic model. Immunostai

Journal article

Bloom CI, Adcock IM, 2023, CC16: a treatable trait in asthma?, American Journal of Respiratory and Critical Care Medicine, Vol: 208, Pages: 745-746, ISSN: 1073-449X

Journal article

Jahankhani K, Ahangari F, Adcock IM, Mortaz Eet al., 2023, Possible cancer-causing capacity of COVID-19: is SARS-CoV-2 an oncogenic agent?, Biochimie, Vol: 213, Pages: 130-138, ISSN: 0300-9084

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown diverse life-threatening effects, most of which are considered short-term. In addition to its short-term effects, which has claimed many millions of lives since 2019, the long-term complications of this virus are still under investigation. Similar to many oncogenic viruses, it has been hypothesized that SARS-CoV-2 employs various strategies to cause cancer in different organs. These include leveraging the renin angiotensin system, altering tumor suppressing pathways by means of its nonstructural proteins, and triggering inflammatory cascades by enhancing cytokine production in the form of a "cytokine storm" paving the way for the emergence of cancer stem cells in target organs. Since infection with SARS-CoV-2 occurs in several organs either directly or indirectly, it is expected that cancer stem cells may develop in multiple organs. Thus, we have reviewed the impact of coronavirus disease 2019 (COVID-19) on the vulnerability and susceptibility of specific organs to cancer development. It is important to note that the cancer-related effects of SARS-CoV-2 proposed in this article are based on the ability of the virus and its proteins to cause cancer but that the long-term consequences of this infection will only be illustrated in the long run.

Journal article

Jia M, Fu H, Jiang X, Wang L, Xu J, Barnes PJ, Adcock IM, Liu Y, He S, Zhang F, Yao L, Sun P, Yao Xet al., 2023, DEL-1, as an anti-neutrophil transepithelial migration molecule, inhibits airway neutrophilic inflammation in asthma., Allergy

BACKGROUND: Neutrophil migration into the airways is a key process in neutrophilic asthma. Developmental endothelial locus-1 (DEL-1), an extracellular matrix protein, is a neutrophil adhesion inhibitor that attenuates neutrophilic inflammation. METHODS: Levels of DEL-1 were measured in exhaled breath condensate (EBC) and serum in asthma patients by ELISA. DEL-1 modulation of neutrophil adhesion and transepithelial migration was examined in a co-culture model in vitro. The effects of DEL-1-adenoviral vector-mediated overexpression on ovalbumin/lipopolysaccharide (OVA/LPS)-induced neutrophilic asthma were studied in mice in vivo. RESULTS: DEL-1 was primarily expressed in human bronchial epithelial cells and was decreased in asthma patients. Serum DEL-1 concentrations were reduced in patients with severe asthma compared with normal subjects (567.1 ± 75.3 vs. 276.8 ± 29.36 pg/mL, p < .001) and were negatively correlated to blood neutrophils (r = -0.2881, p = .0384) and neutrophil-to-lymphocyte ratio (NLR) (r = -0.5469, p < .0001). DEL-1 concentrations in the EBC of severe asthmatic patients (113.2 ± 8.09 pg/mL) were also lower than normal subjects (193.0 ± 7.61 pg/mL, p < .001) and were positively correlated with the asthma control test (ACT) score (r = 0.3678, p = .0035) and negatively related to EBC IL-17 (r = -0.3756, p = .0131), myeloperoxidase (MPO) (r = -0.5967, p = .0055), and neutrophil elastase (NE) (r = -0.5488, p = .0009) expression in asthma patients. Neutrophil adhesion and transepithelial migration in asthma patients were associated with LFA-1 binding to ICAM-1 and inhibited by DEL-1. DEL-1 mRNA and protein expression in human bronchial epithelial cell

Journal article

Yasinska V, Gomez C, Kolmert J, Ericsson M, Pohanka A, James A, Andersson LI, Sparreman-Mikus M, Sousa AR, Riley JH, Bates S, Bakke PS, Kermani NZ, Caruso M, Chanez P, Fowler SJ, Geiser T, Howarth PH, Horvath I, Krug N, Montuschi P, Sanak M, Behndig A, Shaw DE, Knowles RG, Dahlen B, Maitland-van der Zee A-H, Sterk PJ, Djukanovic R, Adcock IM, Chung KF, Wheelock CE, Dahlen S-E, Jonsson EWet al., 2023, Low levels of endogenous anabolic androgenic steroids in females with severe asthma taking corticosteroids, ERJ Open Research, Vol: 9, ISSN: 2312-0541

Rationale Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure.Methods Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study.Measurements and main results The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12–18 months.Conclusion The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

Journal article

Bertels X, Edris A, Garcia-Aymerich J, Faner R, Meteran H, Sigsgaard T, Alter P, Vogelmeier C, Olvera N, Kermani NZ, Agusti A, Donaldson GC, Wedzicha JA, Brusselle GG, Backman H, Ronmark E, Lindberg A, Vonk JM, Chung KF, Adcock IM, van den Berge M, Lahousse Let al., 2023, Phenotyping asthma with airflow obstruction in middle-aged and older adults: a CADSET clinical research collaboration, BMJ Open Respiratory Research, Vol: 10, ISSN: 2052-4439

Background The prevalence and clinical profile of asthma with airflow obstruction (AO) remain uncertain. We aimed to phenotype AO in population- and clinic-based cohorts.Methods This cross-sectional multicohort study included adults ≥50 years from nine CADSET cohorts with spirometry data (N=69 789). AO was defined as ever diagnosed asthma with pre-BD or post-BD FEV1/FVC <0.7 in population-based and clinic-based cohorts, respectively. Clinical characteristics and comorbidities of AO were compared with asthma without airflow obstruction (asthma-only) and chronic obstructive pulmonary disease (COPD) without asthma history (COPD-only). ORs for comorbidities adjusted for age, sex, smoking status and body mass index (BMI) were meta-analysed using a random effects model.Results The prevalence of AO was 2.1% (95% CI 2.0% to 2.2%) in population-based, 21.1% (95% CI 18.6% to 23.8%) in asthma-based and 16.9% (95% CI 15.8% to 17.9%) in COPD-based cohorts. AO patients had more often clinically relevant dyspnoea (modified Medical Research Council score ≥2) than asthma-only (+14.4 and +14.7 percentage points) and COPD-only (+24.0 and +5.0 percentage points) in population-based and clinic-based cohorts, respectively. AO patients had more often elevated blood eosinophil counts (>300 cells/µL), although only significant in population-based cohorts. Compared with asthma-only, AO patients were more often men, current smokers, with a lower BMI, had less often obesity and had more often chronic bronchitis. Compared with COPD-only, AO patients were younger, less often current smokers and had less pack-years. In the general population, AO patients had a higher risk of coronary artery disease than asthma-only and COPD-only (OR=2.09 (95% CI 1.26 to 3.47) and OR=1.89 (95% CI 1.10 to 3.24), respectively) and of depression (OR=1.41 (95% CI 1.19 to 1.67)), osteoporosis (OR=2.30 (95% CI 1.43 to 3.72)) and gastro-oesophageal reflux disease (OR=1

Journal article

Li Y, He Z, Lin Z, Bai J, Adcock IM, Yao Xet al., 2023, Healthy eating index (HEI) as the predictor of asthma: Findings from NHANES, CLINICAL NUTRITION ESPEN, Vol: 56, Pages: 158-165, ISSN: 2405-4577

Journal article

Mumby S, Peros F, Grynblat J, Manaud G, Papi A, Casolari P, Caramori G, Humbert M, Wort SJ, Adcock Iet al., 2023, Differential responses of pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1, Respiratory Research, Vol: 24, Pages: 1-16, ISSN: 1465-9921

BackgroundPulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients.MethodsImmunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1–. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability.ResultsNuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had a g

Journal article

Mumby S, Perros F, Grynblat J, Manaud G, Papi A, Casolari P, Caramori G, Humbert M, John Wort S, Adcock IMet al., 2023, Differential responsesof pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1, Respiratory Research, Vol: 24, ISSN: 1465-9921

Background:Pulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients.Methods:Immunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1–. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability.Results:Nuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had

Journal article

Kermani NZ, Adcock IM, Djukanović R, Chung F, Schofield JPRet al., 2023, Systems biology in asthma., Precision Approaches to Heterogeneity in Asthma, Editors: Braiser, Jarjour, Pages: 215-235

The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.

Book chapter

Liu Q, Weng J, Li C, Feng Y, Xie M, Wang X, Chang Q, Li M, Chung KF, Adcock IM, Huang Y, Zhang H, Li Fet al., 2023, Attenuation of PM2.5-induced alveolar epithelial cells and lung injury through regulation of mitochondrial fission and fusion, Particle and Fibre Toxicology, Vol: 20, Pages: 1-18, ISSN: 1743-8977

BACKGROUND: Exposure to particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is a risk factor for developing pulmonary diseases and the worsening of ongoing disease. Mitochondrial fission and fusion are essential processes underlying mitochondrial homeostasis in health and disease. We examined the role of mitochondrial fission and fusion in PM2.5-induced alveolar epithelial cell damage and lung injury. Key genes in these processes include dystrophin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) respectively. METHODS: Alveolar epithelial (A549) cells were treated with PM2.5 (32 µg/ml) in the presence and absence of Mdivi-1 (10µM, a DRP1 inhibitor) or BGP-15 (10µM, an OPA1 activator). Results were validated using DRP1-knockdown (KD) and OPA1-overexpression (OE). Mice were injected intraperitoneally with Mdivi-1 (20 mg/kg), BGP-15 (20 mg/kg) or distilled water (control) one hour before intranasal instillation of PM2.5 (7.8 mg/kg) or distilled water for two consecutive days. RESULTS: PM2.5 exposure of A549 cells caused oxidative stress, enhanced inflammation, necroptosis, mitophagy and mitochondrial dysfunction indicated by abnormal mitochondrial morphology, decreased mitochondrial membrane potential (ΔΨm), reduced mitochondrial respiration and disrupted mitochondrial fission and fusion. Regulating mitochondrial fission and fusion pharmacologically using Mdivi-1 and BGP-15 and genetically using DRP1-KD and OPA1-OE prevented PM2.5-induced celluar damage in A549 cells. Mdivi-1 and BGP-15 attenuated PM2.5-induced acute lung injury in mice. CONCLUSION: Increased mitochondrial fission and decreased mitochondrial fusion may underlie PM2.5-induced alveolar epithelial cell damage in vitro and lung injury in vivo.

Journal article

Abdel-Aziz MI, Thorsen J, Hashimoto S, Vijverberg SJH, Neerincx AH, Brinkman P, van Aalderen W, Stokholm J, Rasmussen MA, Roggenbuck-Wedemeyer M, Vissing NH, Mortensen MS, Brejnrod AD, Fleming LJ, Murray CS, Fowler SJ, Frey U, Bush A, Singer F, Hedlin G, Nordlund B, Shaw DE, Chung KF, Adcock IM, Djukanovic R, Auffray C, Bansal AT, Sousa AR, Wagers SS, Chawes BL, Bonnelykke K, Sorensen SJ, Kraneveld AD, Sterk PJ, Roberts G, Bisgaard H, Maitland-van der Zee AHet al., 2023, Oropharyngeal Microbiota Clusters in Children with Asthma or Wheeze Associate with Allergy, Blood Transcriptomic Immune Pathways, and Exacerbation Risk, AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, Vol: 208, Pages: 142-154, ISSN: 1073-449X

Journal article

Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato Cet al., 2023, Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation, Frontiers in Immunology, Vol: 14, Pages: 1-27, ISSN: 1664-3224

INTRODUCTION: The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. RESULTS: RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequ

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00155615&limit=30&person=true