Imperial College London

ProfessorIanAdcock

Faculty of MedicineNational Heart & Lung Institute

Professor of Respiratory Cell & Molecular Biology
 
 
 
//

Contact

 

+44 (0)20 7594 7840ian.adcock Website

 
 
//

Location

 

304Guy Scadding BuildingRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

1032 results found

Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén S-E, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R, U-BIOPRED Study Groupet al., 2023, Stratification of asthma by lipidomic profiling of induced sputum supernatant, Journal of Allergy and Clinical Immunology, Vol: 152, Pages: 117-125, ISSN: 0091-6749

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: To perform a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as healthy controls. METHODS: Induced sputum supernatant was collected from 211 asthmatic adults and 41 healthy individuals enrolled in the U-BIOPRED study. Sputum lipidomes were characterised by semi-quantitative shotgun mass spectrometry, and clustered using topological data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of nine molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthmatics and healthy controls, but within the asthmatic population as well. Matching clinical, pathobiological, proteomic and transcriptomic data informed on the underlying disease processes. Sputum lipid phenotypes with higher levels of non-endogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthmatics, resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator. CLINICAL IMPLICATION: Immunomodulation of extracellular vesicle secretion in the lungs may provide a novel therapeutic target for severe asthma.

Journal article

Hou R, Ye G, Cheng X, Shaw DE, Bakke PS, Caruso M, Dahlen B, Dahlen S-E, Fowler SJ, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Auffray C, De Meulder B, Sousa AR, Adcock IM, Fan Chung K, Sterk PJ, Skipp PJ, Schofield J, Djukanović R, U-BIOPRED Study Groupet al., 2023, The role of inflammation in anxiety and depression in the European U-BIOPRED asthma cohorts, Brain, Behavior, and Immunity, Vol: 111, Pages: 249-258, ISSN: 0889-1591

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.

Journal article

Shamji MH, Ollert M, Adcock IM, Bennett O, Favaro A, Sarama R, Riggioni C, Annesi-Maesano I, Custovic A, Fontanella S, Traidl-Hoffmann C, Nadeau K, Cecchi L, Zemelka-Wiacek M, Akdis CA, Jutel M, Agache Iet al., 2023, EAACI guidelines on environmental science in allergic diseases and asthma - Leveraging artificial intelligence and machine learning to develop a causality model in exposomics, Allergy, Vol: 78, Pages: 1742-1757, ISSN: 0105-4538

Allergic diseases and asthma are intrinsically linked to the environment we live in and to patterns of exposure. The integrated approach to understanding the effects of exposures on the immune system includes the ongoing collection of large-scale and complex data. This requires sophisticated methods to take full advantage of what this data can offer. Here we discuss the progress and further promise of applying artificial intelligence and machine-learning approaches to help unlock the power of complex environmental data sets toward providing causality models of exposure and intervention. We discuss a range of relevant machine-learning paradigms and models including the way such models are trained and validated together with examples of machine learning applied to allergic disease in the context of specific environmental exposures as well as attempts to tie these environmental data streams to the full representative exposome. We also discuss the promise of artificial intelligence in personalized medicine and the methodological approaches to healthcare with the final AI to improve public health.

Journal article

Kim H-K, Kang J-O, Lim JE, Ha T-W, Jung HU, Lee WJ, Kim DJ, Baek EJ, Adcock IM, Chung KF, Kim T-B, Oh Bet al., 2023, Genetic differences according to onset age and lung function in asthma: a cluster analysis, Clinical and Translational Allergy, Vol: 13, Pages: 1-14, ISSN: 2045-7022

BACKGROUND: The extent of differences between genetic risks associated with various asthma subtypes is still unknown. To better understand the heterogeneity of asthma, we employed an unsupervised method to identify genetic variants specifically associated with asthma subtypes. Our goal was to gain insight into the genetic basis of asthma. METHODS: In this study, we utilized the UK Biobank dataset to select asthma patients (All asthma, n = 50,517) and controls (n = 283,410). We excluded 14,431 individuals who had no information on predicted values of forced expiratory volume in one second percent (FEV1%) and onset age, resulting in a final total of 36,086 asthma cases. We conducted k-means clustering based on asthma onset age and predicted FEV1% using these samples (n = 36,086). Cluster-specific genome-wide association studies were then performed, and heritability was estimated via linkage disequilibrium score regression. To further investigate the pathophysiology, we conducted eQTL analysis with GTEx and gene-set enrichment analysis with FUMA. RESULTS: Clustering resulted in four distinct clusters: early onset asthmanormalLF (early onset with normal lung function, n = 8172), early onset asthmareducedLF (early onset with reduced lung function, n = 8925), late-onset asthmanormalLF (late-onset with normal lung function, n = 12,481), and late-onset asthmareducedLF (late-onset with reduced lung function, n = 6508). Our GWASs in four clusters and in All asthma sample identified 5 novel loci, 14 novel signals, and 51 cluster-specific signals. Among clusters, early onset asthmanormalLF and late-onset asthmareducedLF were the least correlated (rg  = 0.37). Early onset asthmareducedLF showed the highest heritability explained by common variants (h2  = 0.212) and was associated with the largest number of variants (71 single nucleotide polymorphisms). Further, the pathway analysis conducte

Journal article

Basile U, Santini G, Napodano C, Macis G, Pocino K, Gulli F, Malerba M, Bush A, Adcock IM, Montuschi Pet al., 2023, Elevated serum polyclonal immunoglobulin free light chains in patients with severe asthma, Frontiers in Pharmacology, Vol: 14, Pages: 1-14, ISSN: 1663-9812

Background: Inflammation plays a pivotal role in the pathophysiology of asthma. Free light chains (FLC) can cause inflammation by mast cell antigen-activation. Serum immunoglobulin (Ig) FLC κ, but not λ, were shown elevated in adult males with asthma. We sought to investigate if serum Ig FLC concentrations are affected by asthma severity and their relationships with inflammatory outcomes. Methods: By using immunoassays, we measured serum κ and λ Ig FLCs in 24 severe persistent asthma patients, 15 patients with moderate persistent asthma, 15 steroid-naïve mild persistent asthma patients and 20 healthy control subjects in a cross-sectional observational study. Total and specific serum IgE concentrations, fractional exhaled nitric oxide (FENO), lung function, peripheral blood eosinophils and neutrophils, and C reactive protein (CRP) were also measured. Results: Serum κ FLC concentrations were elevated in severe asthma patients compared mild asthma patients (p < 0.05) and healthy subjects (p < 0.05). Serum λ FLCs were higher in severe asthma patients than in healthy subjects (p < 0.05) and correlated with blood eosinophil counts (percentage, κ: r = 0.51, p = 2.9678-6; λ: r = 0.42, p = 1.7377-4; absolute values, κ: r = 0.45, p = 6.1284-5; λ: r = 0.38, p = 7.8261-4), but not with total or specific serum IgE. In severe asthma patients, serum Ig FLC correlated with serum CRP (κ: r = 0.33; p = 0.003; λ: r = 0.38, p = 8.8305-4) and blood neutrophil cell counts (percentage, κ: r = 0.31; p = 0.008; λ: r = 0.29, p = 0.01; absolute values, κ: r = 0.40; p = 3.9176-4; λ: r = 0.40, p = 4.5479-4), were elevated in subjects with blood eosinophilia (≥300 cells/µL) (n = 13) compared with non-eosinophilic subjects (n = 10) (κ: 19.2 ± 1.2 mg/L versus 12.1 ± 1.3 mg/L, p < 0.001; λ: 27.2 ± 2.6 mg/L versus 16.8 &plu

Journal article

Allam VSRR, Pavlidis S, Liu G, Kermani NZ, Simpson J, To J, Donnelly S, Guo Y-K, Hansbro PM, Phipps S, Morand EF, Djukanovic R, Sterk P, Chung KF, Adcock I, Harris J, Sukkar MBet al., 2023, Macrophage migration inhibitory factor promotes glucocorticoid resistance of neutrophilic inflammation in a murine model of severe asthma, Thorax, Vol: 78, Pages: 661-673, ISSN: 0040-6376

Background: Severe neutrophilic asthma is resistant to treatment with glucocorticoids. The immunomodulatory protein macrophage migration inhibitory factor (MIF) promotes neutrophil recruitment to the lung and antagonises responses to glucocorticoids. We hypothesised that MIF promotes glucocorticoid resistance of neutrophilic inflammation in severe asthma.Methods: We examined whether sputum MIF protein correlated with clinical and molecular characteristics of severe neutrophilic asthma in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. We also investigated whether MIF regulates neutrophilic inflammation and glucocorticoid responsiveness in a murine model of severe asthma in vivo.Results: MIF protein levels positively correlated with the number of exacerbations in the previous year, sputum neutrophils and oral corticosteroid use across all U-BIOPRED subjects. Further analysis of MIF protein expression according to U-BIOPRED-defined transcriptomic-associated clusters (TACs) revealed increased MIF protein and a corresponding decrease in annexin-A1 protein in TAC2, which is most closely associated with airway neutrophilia and NLRP3 inflammasome activation. In a murine model of severe asthma, treatment with the MIF antagonist ISO-1 significantly inhibited neutrophilic inflammation and increased glucocorticoid responsiveness. Coimmunoprecipitation studies using lung tissue lysates demonstrated that MIF directly interacts with and cleaves annexin-A1, potentially reducing its biological activity.Conclusion: Our data suggest that MIF promotes glucocorticoid-resistance of neutrophilic inflammation by reducing the biological activity of annexin-A1, a potent glucocorticoid-regulated protein that inhibits neutrophil accumulation at sites of inflammation. This represents a previously unrecognised role for MIF in the regulation of inflammation and points to MIF as a potential therapeutic target for the management of severe neutrophilic

Journal article

Pham DD, Lee J-H, Kwon H-S, Song W-J, Cho YS, Kim H, Kwon J-W, Park S-Y, Kim S, Hur GY, Kim BK, Nam Y-H, Yang M-S, Kim M-Y, Kim S-H, Lee B-J, Lee T, Park S-Y, Kim M-H, Cho Y-J, Park C, Jung J-W, Park HK, Kim J-H, Moon J-Y, Bhavsar P, Adcock I, Chung KF, Kim T-Bet al., 2023, WITHDRAWN: Prospective direct comparison of biological treatments on severe eosinophilic asthma: Findings from the PRISM study., Ann Allergy Asthma Immunol

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

Journal article

Yao L, Yuan X, Fu H, Guo Q, Wu Y, Xuan S, Kermani NZ, Adcock IM, Zeng X, Liu Y, Xie M, Yao Xet al., 2023, Epithelium-derived cystatin SN inhibits house dust mite protease activity in allergic asthma, ALLERGY, Vol: 78, Pages: 1507-1523, ISSN: 0105-4538

Journal article

Feng Y, Xie M, Liu Q, Weng J, Wei L, Chung KF, Adcock IM, Chang Q, Li M, Huang Y, Zhang H, Li Fet al., 2023, Changes in targeted metabolomics in lung tissue of chronic obstructive pulmonary disease., Journal of Thoracic Disease, Vol: 15, Pages: 2544-2558, ISSN: 2072-1439

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common chronic lung disease and its incidence is steadily increasing. COPD patients and mouse models of COPD share some similarities in lung pathology and physiology. We performed this study to explore the potential metabolic pathways involved in the pathogenesis of COPD and to discover the COPD-associated biomarkers. Furthermore, we aimed to examine how much the mouse model of COPD was similar and different to human COPD in terms of the altered metabolites and pathways. METHODS: Twenty human lung tissue samples (ten COPD and ten controls) and twelve mice lung tissue samples (six COPD and six controls) were analyzed by targeted HM350 metabolomics, and multivariate and pathway analysis were performed by Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS: The counts of many metabolites such as amino acids, carbohydrates and carnitines were changed in both COPD patients and mice compared to controls, respectively. While lipid metabolism was changed only in COPD mice. After KEGG analysis, we found these altered metabolites involved in COPD through aging, apoptosis, oxidative stress and inflammation pathways. CONCLUSIONS: The expressions of metabolites changed in both COPD patients and cigarette smoke exposed (CS-exposed) mice. And there were also some differences between COPD patients and mouse models due to the differences between species. Our study suggested the dysregulation in amino acid metabolism, energy production pathway and perhaps lipid metabolism may be significantly related to the pathogenesis of COPD.

Journal article

Abubakkar-Waziri H, Kalaiarasan G, Wawman R, Hobbs F, Adcock I, Dilliway C, Fang F, Pain C, Porter A, Bhavsar PK, Ransome E, Savolainen V, Kumar P, Chung KFet al., 2023, SARS-CoV2 in public spaces in West London UK during COVID-19 pandemic, BMJ Open Respiratory Research, Vol: 10, ISSN: 2052-4439

Background: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors.Objectives: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces.Methods and analysis: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London.Results: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results.Conclusion: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.

Journal article

Kimura H, Kermani NZ, Adcock IM, Chung K, Kraft Met al., 2023, Lower CC16 Expression in the Airway Is Associated With an Asthma Phenotype and Local and Systemic Type 2 Inflammatory Traits, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Adcock IM, Zounemat-Kermani N, Higenbottam T, Sparreman-Mikus M, Dahlen SKet al., 2023, Dysregulation of Complement Pathways in the U-BIOPRED Severe Asthma Cohort, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Khaleva E, Rattu A, Brightling C, Bush A, Bossios A, Bourdin A, Chung KF, Chaudhuri R, Coleman C, Dahlen S-E, Djukanovic R, Deschildre A, Fleming L, Fowler SJ, Gupta A, Hamelmann E, Hashimoto S, Hedlin G, Koppelman GH, Melen E, Murray CS, Pilette C, Porsbjerg C, Pike KC, Rusconi F, Williams C, Ahrens B, Alter P, Anckers F, van den Berge M, Blumchen K, Brusselle G, Clarke GW, Cunoosamy D, Dahlen B, Dixey P, Exley A, Frey U, Gaillard EA, Giovannini-Chami L, Grigg J, Hartenstein D, Heaney LG, Karadag B, Kaul S, Kull I, Licari A, Maitland-van der Zee AH, Mahler V, Schoos A-MM, Nagakumar P, Negus J, Nielsen H, Paton J, Pijnenburg M, Ramiconi V, Vilarnau SR, Principe S, Rutjes N, Saglani S, Seddon P, Singer F, Staudinger H, Turner S, Vijverberg S, Winders T, Yasinska V, Roberts Get al., 2023, Development of Core Outcome Measures sets for paediatric and adult Severe Asthma (COMSA), European Respiratory Journal, Vol: 61, ISSN: 0903-1936

Background Effectiveness studies with biological therapies for asthma lack standardised outcome measures. The COMSA (Core Outcome Measures sets for paediatric and adult Severe Asthma) Working Group sought to develop Core Outcome Measures (COM) sets to facilitate better synthesis of data and appraisal of biologics in paediatric and adult asthma clinical studies.Methods COMSA utilised a multi-stakeholder consensus process among patients with severe asthma, adult and paediatric clinicians, pharmaceutical representatives, and health regulators from across Europe. Evidence included a systematic review of development, validity and reliability of selected outcome measures plus a narrative review and a pan-European survey to better understand patients’ and carers’ views about outcome measures. It was discussed using a modified GRADE (Grading of Recommendations Assessment, Development and Evaluation) Evidence to Decision framework. Anonymous voting was conducted using predefined consensus criteria.Results Both adult and paediatric COM sets include forced expiratory volume in 1 s (FEV1) as z-scores, annual frequency of severe exacerbations and maintenance oral corticosteroid use. Additionally, the paediatric COM set includes the Paediatric Asthma Quality of Life Questionnaire and Asthma Control Test or Childhood Asthma Control Test, while the adult COM set includes the Severe Asthma Questionnaire and Asthma Control Questionnaire-6 (symptoms and rescue medication use reported separately).Conclusions This patient-centred collaboration has produced two COM sets for paediatric and adult severe asthma. It is expected that they will inform the methodology of future clinical trials, enhance comparability of efficacy and effectiveness of biological therapies, and help assess their socioeconomic value. COMSA will inform definitions of non-response and response to biological therapy for severe asthma.

Journal article

Faiz A, Pavlidis S, Kuo C-H, Rowe A, Hiemstra PS, Timens W, Berg M, Wisman M, Guo Y-K, Djukanovi R, Sterk P, Meyer KB, Nawijn MC, Adcock I, Chung KF, van den Berge Met al., 2023, Th2 high and mast cell gene signatures are associated with corticosteroid sensitivity in COPD, Thorax, Vol: 78, Pages: 335-343, ISSN: 0040-6376

Rationale Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3).Objective We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity.Methods Using gene set variation analysis, we examined the distribution and enrichment scores (ES) of the 3 TACs in the transcriptome of bronchial biopsies from 46 patients who participated in the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease COPD study that received 30 months of treatment with inhaled corticosteroids (ICS) with and without an added long-acting β-agonist (LABA). The identified signatures were then associated with longitudinal clinical variables after treatment. Differential gene expression and cellular convolution were used to define key regulated genes and cell types.Measurements and main results Bronchial biopsies in patients with COPD at baseline showed a wide range of expression of the 3 TAC signatures. After ICS±LABA treatment, the ES of TAC1 was significantly reduced at 30 months, but those of TAC2 and TAC3 were unaffected. A corticosteroid-sensitive TAC1 signature was developed from the TAC1 ICS-responsive genes. This signature consisted of mast cell-specific genes identified by single-cell RNA-sequencing and positively correlated with bronchial biopsy mast cell numbers following ICS±LABA. Baseline levels of gene transcription correlated with the change in RV/TLC %predicted following 30-month ICS±LABA.Conclusion Sputum-derived transcriptomic signat

Journal article

Scaramuzzo G, Francesco N, Asmundo A, Messina R, Mari M, Montanaro F, Johansen MD, Monaco F, Fadda G, Tuccari G, Hansbro NG, Hansbro PM, Hansel TT, Adcock IM, David A, Kirkham P, Caramori G, Volta CA, Spadaro Set al., 2023, Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance, Journal of Inflammation, Vol: 20, ISSN: 1476-9255

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.

Journal article

Lee J-H, Dixey P, Bhavsar P, Raby K, Kermani N, Chadeau-Hyam M, Adcock IM, Song W-J, Kwon H-S, Lee S-W, Cho YS, Chung KF, Kim T-Bet al., 2023, Precision Medicine Intervention in Severe Asthma (PRISM) study: molecular phenotyping of patients with severe asthma and response to biologics, ERJ Open Research, Vol: 9, ISSN: 2312-0541

Severe asthma represents an important clinical unmet need despite the introduction of biologic agents. Although advanced omics technologies have aided researchers in identifying clinically relevant molecular pathways, there is a lack of an integrated omics approach in severe asthma particularly in terms of its evolution over time. The collaborative Korea–UK research project Precision Medicine Intervention in Severe Asthma (PRISM) was launched in 2020 with the aim of identifying molecular phenotypes of severe asthma by analysing multi-omics data encompassing genomics, epigenomics, transcriptomics, proteomics, metagenomics and metabolomics. PRISM is a prospective, observational, multicentre study involving patients with severe asthma attending severe asthma clinics in Korea and the UK. Data including patient demographics, inflammatory phenotype, medication, lung function and control status of asthma will be collected along with biological samples (blood, sputum, urine, nasal epithelial cells and exhaled breath condensate) for omics analyses. Follow-up evaluations will be performed at baseline, 1 month, 4–6 months and 10–12 months to assess the stability of phenotype and treatment responses for those patients who have newly begun biologic therapy. Standalone and integrated omics data will be generated from the patient samples at each visit, paired with clinical information. By analysing these data, we will identify the molecular pathways that drive lung function, asthma control status, acute exacerbations and the requirement for daily oral corticosteroids, and that are involved in the therapeutic response to biological therapy. PRISM will establish a large multi-omics dataset of severe asthma to identify potential key pathophysiological pathways of severe asthma.

Journal article

Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski MM, Pain CC, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AEet al., 2023, Characteristics of fine and ultrafine aerosols in the London underground., Science of the Total Environment, Vol: 858, ISSN: 0048-9697

Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM0.1), fine (PM0.1-2.5) and coarse (PM2.5-10) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5, PM2.5-10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 μg m-3) and PM2.5 (34 μg m-3) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1), highlight the need to improve the ventilation conditions.

Journal article

Mortaz E, Jamaati H, Dezfuli NK, Sheikhzade H, Hashemian SM, Roofchayee ND, Dastan F, Tabarsi P, Folkerts G, Garssen J, Mumby S, Adcock IMet al., 2023, Changes in PD-1-and CTLA-4-bearing Blood Lymphocytes in ICU COVID-19 Patients Treated with Favipiravir/Kaletra or<i> Dexamethasone/Remdesivir:</i> A Pilot Study, IRANIAN JOURNAL OF ALLERGY ASTHMA AND IMMUNOLOGY, Vol: 22, Pages: 99-109, ISSN: 1735-1502

Journal article

Agache I, Shamji MH, Kermani NZ, Vecchi G, Favaro A, Layhadi JA, Heider A, Akbas DS, Filipaviciute P, Wu LYD, Cojanu C, Laculiceanu A, Akdis CA, Adcock IMet al., 2023, Multidimensional endotyping using nasal proteomics predicts molecular phenotypes in the asthmatic airways, Journal of Allergy and Clinical Immunology, Vol: 151, Pages: 128-137, ISSN: 0091-6749

BACKGROUND: Unsupervised clustering of biomarkers derived from non-invasive samples such as nasal fluid is less evaluated as a tool for describing asthma endotypes. OBJECTIVE: To evauate whether protein expression in nasal fluid would identify distinct clusters of asthmatics with specific lower airway molecular phenotypes. METHODS: Unsupervised clustering of 168 nasal inflammatory and immune proteins and Shapley values was used to stratify 43 severe asthmatic patients (ENDANA) using a two 'modelling blocks' machine learning (ML) approach. This algorithm was also applied to nasal brushings transcriptomics from U-BIOPRED. Feature reduction and functional gene analysis were used to compare proteomic and transcriptomic clusters. Gene set variation analysis (GSVA) provided enrichment scores (ESs) of the ENDANA protein signature within U-BIOPRED sputum and blood. RESULTS: The nasal protein ML model identified two severe asthma endotypes, which were replicated in U-BIOPRED nasal transcriptomics. Cluster 1 patients had significant airway obstruction, small airways disease, air trapping, decreased diffusing capacity and increased oxidative stress, although only 4/18 were current smokers. Shapley identified 20 cluster-defining proteins. Forty-one proteins were significantly higher in Cluster 1. Pathways associated with proteomic and transcriptomic clusters were linked to Th1, Th2, neutrophil, JAK-STAT, TLR and infection activation. GSVA analysis of the nasal protein and gene signatures were enriched in subjects with sputum neutrophilic/mixed granulocytic asthma and in subjects with a molecular phenotype found in sputum neutrophil-high subjects. CONCLUSIONS: Protein or gene analysis may indicate molecular phenotypes within the asthmatic lower airway and provide a simple, non-invasive test for non-T2 asthma that is currently unavailable.

Journal article

Kole TM, Vanden Berghe E, Kraft M, Vonk JM, Nawijn MC, Siddiqui S, Sun K, Fabbri LM, Rabe KF, Chung KF, Nicolini G, Papi A, Brightling C, Singh D, van der Molen T, Dahlén S-E, Agusti A, Faner R, Wedzicha JA, Donaldson GC, Adcock IM, Lahousse L, Kerstjens HAM, van den Berge M, ATLANTIS, U-BIOPRED, CADSET investigatorset al., 2023, Predictors and associations of the persistent airflow limitation phenotype in asthma: a post-hoc analysis of the ATLANTIS study., The Lancet Respiratory Medicine, Vol: 11, Pages: 55-64, ISSN: 2213-2600

BACKGROUND: Persistent airflow limitation (PAL) occurs in a subset of patients with asthma. Previous studies on PAL in asthma have included relatively small populations, mostly restricted to severe asthma, or have no included longitudinal data. The aim of this post-hoc analysis was to investigate the determinants, clinical implications, and outcome of PAL in patients with asthma who were included in the ATLANTIS study. METHODS: In this post-hoc analysis of the ATLANTIS study, we assessed the prevalence, clinical characteristics, and implications of PAL across the full range of asthma severity. The study population included patients aged 18-65 years who had been diagnosed with asthma at least 6 months before inclusion. We defined PAL as a post-bronchodilator FEV1/forced vital capacity (FVC) of less than the lower limit of normal at recruitment. Asthma severity was defined according to the Global Initiative for Asthma. We used Mann-Whitney U test, t test, or χ2 test to analyse differences in baseline characteristics between patients with and without PAL. Logistic regression was used for multivariable analysis of the associations between PAL and baseline data. Cox regression was used to analyse risk of exacerbation in relation to PAL, and a linear mixed-effects model was used to analyse change in FEV1 over time in patients with versus patients without PAL. Results were validated in the U-BIOPRED cohort. FINDINGS: Between June 30, 2014 and March 3, 2017, 773 patients were enrolled in the ATLANTIS study of whom 760 (98%) had post-bronchodilator FEV1/FVC data available. Of the included patients with available data, mean age was 44 years (SD 13), 441 (58%) of 760 were women, 578 (76%) were never-smokers, and 248 (33%) had PAL. PAL was not only present in patients with severe asthma, but also in 21 (16%) of 133 patients with GINA step 1 and 24 (29%) of 83 patients with GINA step 2. PAL was independently associated with older age at baseline (46 years in PAL group vs 43

Journal article

Kermani N, Versi A, Gay A, Vlasma J, Jayalatha AKS, Koppelman GH, Nawijn M, Faiz A, van den Berge M, Adcock IM, Chung KFet al., 2023, Gene signatures in U-BIOPRED severe asthma for molecular phenotyping and precision medicine: time for clinical use, Expert Review of Respiratory Medicine, Vol: 17, Pages: 965-971, ISSN: 1747-6348

INTRODUCTION: The use and generation of gene signatures have been established as a method to define molecular endotypes in complex diseases such as severe asthma. Bioinformatic approaches have now been applied to large omics datasets to define the various co-existing inflammatory and cellular functional pathways driving or characterizing a particular molecular endotype. AREAS COVERED: Molecular phenotypes and endotypes of Type 2 inflammatory pathways and also of non-Type 2 inflammatory pathways, such as IL-6 trans-signaling, IL-17 activation, and IL-22 activation, have been defined in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes dataset. There has also been the identification of the role of mast cell activation and of macrophage dysfunction in various phenotypes of severe asthma. EXPERT OPINION: Phenotyping on the basis of clinical treatable traits is not sufficient for understanding of mechanisms driving the disease in severe asthma. It is time to consider whether certain patients with severe asthma, such as those non-responsive to current therapies, including Type 2 biologics, would be better served using an approach of molecular endotyping using gene signatures for management purposes rather than the current sole reliance on blood eosinophil counts or exhaled nitric oxide measurements.

Journal article

Nucera F, Salvato I, Ricciardi L, Col JD, Monaco F, Hansbro PM, Adcock IM, Casolaro V, Stellato C, Caramori Get al., 2023, RNA-binding Proteins as a New Link Between COPD and Lung Cancer, Interdisciplinary Cancer Research, Publisher: Springer International Publishing

Book chapter

Kiaee F, Jamaati H, Shahi H, Roofchayee ND, Varahram M, Folkerts G, Garssen J, Adcock IM, Mortaz Eet al., 2022, Immunophenotype and function of circulating myeloid derived suppressor cells in COVID-19 patients, Scientific Reports, Vol: 12, ISSN: 2045-2322

The pathogenesis of coronavirus disease 2019 (COVID-19) is not fully elucidated. COVID-19 is due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes severe illness and death in some people by causing immune dysregulation and blood T cell depletion. Increased numbers of myeloid-derived suppressor cells (MDSCs) play a diverse role in the pathogenesis of many infections and cancers but their function in COVID-19 remains unclear. To evaluate the function of MDSCs in relation with the severity of COVID-19. 26 PCR-confirmed COVID-19 patients including 12 moderate and 14 severe patients along with 11 healthy age- and sex-matched controls were enrolled. 10 ml whole blood was harvested for cell isolation, immunophenotyping and stimulation. The immunophenotype of MDSCs by flow cytometry and T cells proliferation in the presence of MDSCs was evaluated. Serum TGF-β was assessed by ELISA. High percentages of M-MDSCs in males and of P-MDSCs in female patients were found in severe and moderate affected patients. Isolated MDSCs of COVID-19 patients suppressed the proliferation and intracellular levels of IFN-γ in T cells despite significant suppression of T regulatory cells but up-regulation of precursor regulatory T cells. Serum analysis shows increased levels of TGF-β in severe patients compared to moderate and control subjects (HC) (P = 0.003, P < 0.0001, respectively). The frequency of MDSCs in blood shows higher frequency among both moderate and severe patients and may be considered as a predictive factor for disease severity. MDSCs may suppress T cell proliferation by releasing TGF-β.

Journal article

Do AR, An J, Jo J, Kim WJ, Kang HY, Lee S, Yoon D, Cho YS, Adcock IM, Chung KF, Won S, Kim T-Bet al., 2022, A genome-wide association study implicates the pleiotropic effect of NMUR2 on asthma and COPD, Scientific Reports, Vol: 12, ISSN: 2045-2322

Asthma and chronic obstructive pulmonary disease (COPD) are two distinct diseases that are associated with chronic inflammation. They share common features in terms of their advanced stages and genetic factors. This study aimed to identify novel genes underlying both asthma and COPD using genome-wide association study (GWAS) to differentiate between the two diseases. We performed a GWAS of asthma and COPD in 7828 Koreans from three hospitals. In addition, we investigated genetic correlations. The UK Biobank dataset was used for the replication studies. We found that rs2961757, located near neuromedin U receptor 2 (NMUR2) on chromosome 5, was genome-wide significant ([Formula: see text] = 0.44, P-valueAsthma-COPD = 3.41 × 10-8), and significant results were replicated with the UK Biobank data ([Formula: see text] = 0.04, P-valueAsthma-COPD = 0.0431). A positive genetic correlation was observed between asthma and COPD (39.8% in the Korean dataset and 49.8% in the UK Biobank dataset). In this study, 40-45% of the genetic effects were common to asthma and COPD. Moreover, NMUR2 increases the risk of asthma development and suppresses COPD development. This indicates that NMUR2 allows for better differentiation of both diseases, which can facilitate tailored medical therapy.

Journal article

Kumar P, Kalaiarasan G, Bhagat RK, Mumby S, Adcock IM, Porter AE, Ransome E, Abubakar-Waziri H, Bhavsar P, Shishodia S, Dilliway C, Fang F, Pain CC, Chung KFet al., 2022, Active air monitoring for understanding the ventilation and infection risks of SARS-CoV-2 transmission in public indoor spaces, Atmosphere, Vol: 13, Pages: 1-24, ISSN: 2073-4433

Indoor, airborne, transmission of SARS-CoV-2 is a key infection route. We monitored fourteen different indoor spaces in order to assess the risk of SARS-CoV-2 transmission. PM2.5 and CO2 concentrations were simultaneously monitored in order to understand aerosol exposure and ventilation conditions. Average PM2.5 concentrations were highest in the underground station (261 ± 62.8 μgm−3), followed by outpatient and emergency rooms in hospitals located near major arterial roads (38.6 ± 20.4 μgm−3), the respiratory wards, medical day units and intensive care units recorded concentrations in the range of 5.9 to 1.1 μgm−3. Mean CO2 levels across all sites did not exceed 1000 ppm, the respiratory ward (788 ± 61 ppm) and the pub (bar) (744 ± 136 ppm) due to high occupancy. The estimated air change rates implied that there is sufficient ventilation in these spaces to manage increased levels of occupancy. The infection probability in the medical day unit of hospital 3, was 1.6-times and 2.2-times higher than the emergency and outpatient waiting rooms in hospitals 4 and 5, respectively. The temperature and relative humidity recorded at most sites was below 27 °C, and 40% and, in sites with high footfall and limited air exchange, such as the hospital medical day unit, indicate a high risk of airborne SARS-CoV-2 transmission.

Journal article

Pillar A, Brown A, Mayall J, Weaver J, Essilfie A, Hoefel G, Ali MK, Kim R, Donovan C, Gomez H, Vanka KS, Tay H, Kermani N, Guo Y, Mumby S, Adcock I, Anderson G, Frazer D, Johnstone D, Milward E, Hansbro P, Wark P, Reid D, Foster P, Horvat Jet al., 2022, Relationship between interleukin-13 and transferrin receptor-1 responses in the pathogenesis of asthma, 2022 ERS International Congress, in session, Publisher: European Respiratory Society, ISSN: 0903-1936

Conference paper

Waziri H, Kalaiarasan G, Wawman R, Hobbs F, Young G, Ransome E, Adcock I, Bhavsar P, Savolainen V, Porter A, Kumar P, Chung KFet al., 2022, Characterising SARS-CoV-2 transmission via aerosols and effective sampling methods for surveillance, 2022 ERS International Congress, Publisher: European Respiratory Society, ISSN: 0903-1936

Conference paper

Pinkerton J, Kim R, Brown A, Rae B, Donovan C, Mayall J, Ali MK, Scott H, Berthon B, Baines K, Starkey M, Kermani N, Guo Y, Robertson A, O'Neill L, Adcock I, Cooper M, Gibson P, Wood L, Hansbro P, Horvat Jet al., 2022, Interaction between type 2 cytokine and inflammasome responses in the pathogenesis of obesity-associated asthma, 2022 ERS International Congress, Publisher: European Respiratory Society, ISSN: 0903-1936

Conference paper

Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PMet al., 2022, Adverse roles of mast cell chymase-1 in COPD, EUROPEAN RESPIRATORY JOURNAL, Vol: 60, ISSN: 0903-1936

Journal article

Carroll O, Brown A, Mayall J, Zounemat-Kermani N, Gomez H, Kim R, Donovan C, Williams E, Berthon B, Pinkerton J, Wynne K, Scott H, Guo Y, Hansbro P, Foster P, Dahlen S, Adcock I, Wood L, Horvat Jet al., 2022, Female sex hormones affect asthma severity by altering cellular metabolism in the airways, 2022 ERS International Congress, Publisher: European Respiratory Society, ISSN: 0903-1936

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00155615&person=true&page=2&respub-action=search.html