Imperial College London

Dr Joyce Odeke Akello

Faculty of MedicineSchool of Public Health

Research Associate
 
 
 
//

Contact

 

j.akello

 
 
//

Location

 

1101.W1Sir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

12 results found

Shaw AG, Troman C, Akello JO, O'Reilly KM, Gauld J, Grow S, Grassly N, Steele D, Blazes D, Kumar S, Environmental Surveillance Working Groupet al., 2023, Defining a research agenda for environmental wastewater surveillance of pathogens, Nature Medicine, Vol: 29, Pages: 2155-2157, ISSN: 1078-8956

Journal article

Shaw AGG, Mampuela TK, Lofiko EL, Pratt C, Troman C, Bujaki E, O'Toole A, Akello JO, Aziza AA, Lusamaki EK, Makangara JC, Akonga M, Lay Y, Nsunda B, White B, Jorgensen D, Pukuta E, Riziki Y, Rankin KEE, Rambaut A, Ahuka-Mundeke S, Muyembe J-J, Martin J, Grassly NCC, Mbala-Kingebeni Pet al., 2023, Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study, NATURE MICROBIOLOGY, ISSN: 2058-5276

Journal article

Akello J, Bujaki E, Shaw A, Khurshid A, Arshad Y, Troman C, Majumdar M, O'Toole Á, Rambaut A, Alam MM, Martin J, Grassly Net al., 2023, Comparison of eleven RNA extraction methods for poliovirus direct molecular detection in stool samples, Microbiology Spectrum, Vol: 11, Pages: 1-13, ISSN: 2165-0497

Direct detection by PCR of poliovirus RNA in stool samples provides a rapid diagnostic and surveillance tool that can replace virus isolation by cell culture in global polio surveillance. The sensitivity of direct detection methods is likely to depend on the choice of RNA extraction method and sample volume. We report a comparative analysis of 11 nucleic acid extraction methods (7 manual and 4 semiautomated) for poliovirus molecular detection using stool samples (n = 59) that had been previously identified as poliovirus positive by cell culture. To assess the effect of RNA recovery methods, extracted RNA using each of the 11 methods was tested with a poliovirus-specific reverse transcription-quantitative PCR (RT-qPCR), a pan-poliovirus RT-PCR (near-whole-genome amplification), a pan-enterovirus RT-PCR (entire capsid region), and a nested VP1 PCR that is the basis of a direct detection method based on nanopore sequencing. We also assessed extracted RNA integrity and quantity. The overall effect of extraction method on poliovirus PCR amplification assays tested in this study was found to be statistically significant (P < 0.001), thus indicating that the choice of RNA extraction method is an important component that needs to be carefully considered for any diagnostic based on nucleic acid amplification. Performance of the methods was generally consistent across the different assays used. Of the 11 extraction methods tested, the MagMAX viral RNA isolation kit used manually or automatically was found to be the preferable method for poliovirus molecular direct detection considering performance, cost, and processing time.

Journal article

Elviss NC, Allen DJ, Kelly D, Akello JO, Hau S, Fox AJ, Hopkins M, Derrick J, O'Brien S, Iturriza-Gomara Met al., 2022, Norovirus attribution study: Detection of norovirus from the commercial food preparation environment in outbreak and non-outbreak premises, JOURNAL OF APPLIED MICROBIOLOGY, Vol: 133, Pages: 3391-3403, ISSN: 1364-5072

Journal article

Klapsa D, Wilton T, Zealand A, Bujaki E, Saxentoff E, Troman C, Shaw AG, Tedcastle A, Majumdar M, Mate R, Akello JO, Huseynov S, Zeb A, Zambon M, Bell A, Hagan J, Wade MJ, Ramsay M, Grassly NC, Saliba V, Martin Jet al., 2022, Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance, The Lancet, Vol: 400, Pages: 1531-1538, ISSN: 0140-6736

BACKGROUND: The international spread of poliovirus exposes all countries to the risk of outbreaks and is designated a Public Health Emergency of International Concern by WHO. This risk can be exacerbated in countries using inactivated polio vaccine, which offers excellent protection against paralysis but is less effective than oral vaccine against poliovirus shedding, potentially allowing circulation without detection of paralytic cases for long periods of time. Our study investigated the molecular properties of type 2 poliovirus isolates found in sewage with an aim to detect virus transmission in the community. METHODS: We performed environmental surveillance in London, UK, testing sewage samples using WHO recommended methods that include concentration, virus isolation in cell culture, and molecular characterisation. We additionally implemented direct molecular detection and determined whole-genome sequences of every isolate using novel nanopore protocols. FINDINGS: 118 genetically linked poliovirus isolates related to the serotype 2 Sabin vaccine strain were detected in 21 of 52 sequential sewage samples collected in London between Feb 8 and July 4, 2022. Expansion of environmental surveillance sites in London helped localise transmission to several boroughs in north and east London. All isolates have lost two key attenuating mutations, are recombinants with a species C enterovirus, and an increasing proportion (20 of 118) meet the criterion for a vaccine-derived poliovirus, having six to ten nucleotide changes in the gene coding for VP1 capsid protein. INTERPRETATION: Environmental surveillance allowed early detection of poliovirus importation and circulation in London, permitting a rapid public health response, including enhanced surveillance and an inactivated polio vaccine campaign among children aged 1-9 years. Whole-genome sequences generated through nanopore sequencing established linkage of isolates and confirmed transmission of a unique recombinant poliov

Journal article

Kelly D, Allen DJ, Akello JO, Hau S, Iturriza-Gómara Met al., 2022, A Comparison of Two Methods for Detection of Norovirus RNA in Environmental Swab Samples, Applied Microbiology, Vol: 2, Pages: 460-469

<jats:p>Standardised molecular methods are available for the detection of norovirus from water and specific food items. Detection of norovirus from stool samples also relies on molecular methods, but differences exist between nucleic acid extraction, reverse transcription, and amplification strategies recommended by the ISO 15216-1:2017, and those employed in clinical laboratories. Here, we conduct a direct comparison of two methods for the detection and quantitation of norovirus from a stool sample and from artificially contaminated swabs. We also compare use of linear dsDNA standards as recommended in ISO 15216:2017 against an in vitro-transcribed single-stranded RNA (ssRNA) for estimation of norovirus genome copy number. Our results show that the two methods have comparable sensitivity for the detection of norovirus RNA from a clinical sample or swab. The use of a ssRNA standard revealed that quantitation performed against a linear dsDNA standard consistently underestimated the genome copy numbers by 1.5 to 2 log due to the relative inefficiency of the reverse transcription step. This has important implications for the estimation of the sensitivity of norovirus detection methods, comparability of results across sites, and assessment of viral loads that may be clinically significant or estimated to constitute infectious doses.</jats:p>

Journal article

Akello JO, Kamgang R, Barbani MT, Suter-Riniker F, Aebi C, Beuret C, Paris DH, Leib SL, Ramette Aet al., 2021, Genomic analyses of human adenoviruses unravel novel recombinant genotypes associated with severe infections in pediatric patients, Scientific Reports, Vol: 11, Pages: 1-10, ISSN: 2045-2322

Human adenoviruses (HAdVs) are highly contagious pathogens of clinical importance, especially among the pediatric population. Studies on comparative viral genomic analysis of cases associated with severe and mild infections due to HAdV are limited. Using whole-genome sequencing (WGS), we investigated whether there were any differences between circulating HAdV strains associated with severe infections (meningitis, sepsis, convulsion, sudden infant death syndrome, death, and hospitalization) and mild clinical presentations in pediatric patients hospitalized between the years 1998 and 2017 in a tertiary care hospital group in Bern, Switzerland covering a population base of approx. 2 million inhabitants. The HAdV species implicated in causing severe infections in this study included HAdV species C genotypes (HAdV1, HAdV2, and HAdV5). Clustering of the HAdV whole-genome sequences of the severe and mild cases did not show any differences except for one sample (isolated from a patient presenting with sepsis, meningitis, and hospitalization) that formed its own cluster with HAdV species C genotypes. This isolate showed intertypic recombination events involving four genotypes, had the highest homology to HAdV89 at complete genome level, but possessed the fiber gene of HAdV1, thereby representing a novel genotype of HAdV species C. The incidence of potential recombination events was higher in severe cases than in mild cases. Our findings confirm that recombination among HAdVs is important for molecular evolution and emergence of new strains. Therefore, further research on HAdVs, particularly among susceptible groups, is needed and continuous surveillance is required for public health preparedness including outbreak investigations.

Journal article

Akello JO, Kamgang R, Barbani MT, Suter-Riniker F, Aebi C, Beuret C, Paris DH, Leib SL, Ramette Aet al., 2021, Genomic analyses of human adenoviruses unravel novel recombinant genotypes associated with severe infections in pediatric patients

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Human Adenoviruses (HAdVs) are highly contagious pathogens of clinical importance, especially among the pediatric population. Studies on comparative viral genomic analysis of cases associated with severe and mild infections due to HAdV are limited. Using whole-genome sequencing (WGS), we investigated whether there were any differences between circulating HAdV strains associated with severe infections (meningitis, sepsis, convulsion, sudden infant death syndrome, death, and hospitalization) and mild clinical presentations in pediatric patients hospitalized between the years 1998 and 2017 in a tertiary care hospital group in Bern, Switzerland covering a population base of approx. 2 million inhabitants. The HAdV species implicated in causing severe infections in this study included HAdV species C genotypes (HAdV1, HAdV2, and HAdV5). Clustering of the HAdV whole-genome sequences of the severe and mild cases did not show any differences except for one sample (isolated from a patient presenting with sepsis, meningitis, and hospitalization) that formed its own cluster with HAdV species C genotypes. This isolate showed intertypic recombination events involving four genotypes, had the highest homology to HAdV89 at complete genome level, but possessed the fiber gene of HAdV1, thereby representing a novel genotype of HAdV species C. The incidence of potential recombination events was higher in severe cases than in mild cases. Our findings confirm that recombination among HAdVs is important for molecular evolution and emergence of new strains. Therefore, further research on HAdVs, particularly among susceptible groups, is needed and continuous surveillance is required for public health preparedness including outbreak investigations.</jats:p></jats:sec>

Working paper

Kinsella CM, Santos PD, Postigo-Hidalgo I, Folgueiras-González A, Passchier TC, Szillat KP, Akello JO, Álvarez-Rodríguez B, Martí-Carreras Jet al., 2020, Preparedness needs research: How fundamental science and international collaboration accelerated the response to COVID-19., PLoS Pathogens, Vol: 16, Pages: 1-12, ISSN: 1553-7366

The first cluster of patients suffering from coronavirus disease 2019 (COVID-19) was identified on December 21, 2019, and as of July 29, 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been linked with 664,333 deaths and number at least 16,932,996 worldwide. Unprecedented in global societal impact, the COVID-19 pandemic has tested local, national, and international preparedness for viral outbreaks to the limits. Just as it will be vital to identify missed opportunities and improve contingency planning for future outbreaks, we must also highlight key successes and build on them. Concomitant to the emergence of a novel viral disease, there is a 'research and development gap' that poses a threat to the overall pace and quality of outbreak response during its most crucial early phase. Here, we outline key components of an adequate research response to novel viral outbreaks using the example of SARS-CoV-2. We highlight the exceptional recent progress made in fundamental science, resulting in the fastest scientific response to a major infectious disease outbreak or pandemic. We underline the vital role of the international research community, from the implementation of diagnostics and contact tracing procedures to the collective search for vaccines and antiviral therapies, sustained by unique information sharing efforts.

Journal article

Akello JO, Leib SL, Engler O, Beuret Cet al., 2020, Evaluation of viral RNA recovery methods in vectors by metagenomic sequencing., Viruses, Vol: 12, Pages: 1-17, ISSN: 1999-4915

Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance.

Journal article

Akello JO, Kamgang R, Barbani MT, Suter-Riniker F, Leib SL, Ramette Aet al., 2020, Epidemiology of human adenoviruses: a 20-year retrospective observational study in hospitalized patients in Bern, Switzerland., Clin Epidemiol, Vol: 12, Pages: 353-366, ISSN: 1179-1349

Background: Human adenovirus (HAdV) is an important pathogen seen in clinical practice. Long-term studies may help better understand epidemiological trends and changes in circulating genotypes over time. Purpose: Using a large biobank of samples from hospitalized, adenovirus-positive patients over a 20-year period, we aimed to analyze long-term epidemiological trends and genotypic relatedness among circulating HAdV strains. Methods: Based on samples from hospitalized patients confirmed to be HAdV positive in Bern, Switzerland, from 1998 to 2017, and on their associated demographic and clinical data, we identified epidemiological trends and risk factors associated with HAdV infection. HAdV genotyping was performed by PCR amplification and sequencing of the hypervariable hexon gene. The obtained sequences were phylogenetically compared with sequences from international HAdV strains. Results: HAdV was identified in 1302 samples tested. Cases of HAdV infection were reported throughout the years with no clear seasonality. Upper respiratory tract samples, conjunctivitis swabs, and stool had the highest positivity rate (56.2%, 18.7%, and 14.2% of the cases, respectively). HAdV infection was highest among children ≤4 years old. Increased number of HAdV cases were observed in years 2009 (n = 110) and 2010 (n =112). HAdV8 was the predominant genotype among patients older than 20 years, and was mostly associated with ophthalmic infection. Predominant genotypes among children ≤4 years old were HAdV1, HAdV2, and HAdV3, which were mostly associated with respiratory tract infections. Recurring peaks of increased HAdV cases were evidenced every 4 years among children ≤4 years old. Conclusion: Our study gives novel insights on long-term epidemiological trends and phylogenetic relatedness among circulating HAdV strains in Switzerland, country in which little data on HAdV prevalence and diversity was so far available.

Journal article

Majumdar M, Klapsa D, Wilton T, Akello J, Anscombe C, Allen D, Mee ET, Minor PD, Martin Jet al., 2018, Isolation of vaccine-like poliovirus strains in sewage samples from the United Kingdom., Journal of Infectious Diseases, Vol: 217, Pages: 1222-1230, ISSN: 0022-1899

Background: Environmental surveillance (ES) is a sensitive method for detecting human enterovirus (HEV) circulation, and it is used worldwide to support global polio eradication. We describe a novel ES approach using next-generation sequencing (NGS) to identify HEVs in sewage samples collected in London, United Kingdom, from June 2016 to May 2017. Methods: Two different methods were used to process raw sewage specimens: a 2-phase aqueous separation system and size exclusion by filtration and centrifugation. HEVs were isolated using cell cultures and analyzed using NGS. Results: Type 1 and 3 vaccine-like poliovirus (PV) strains were detected in samples collected from September 2016 through January 2017. NGS analysis allowed us to rapidly obtain whole-genome sequences of PV and non-PV HEV strains. As many as 6 virus strains from different HEV serotypes were identified in a single cell culture flask. PV isolates contained only a small number of mutations from vaccine strains commonly seen in early isolates from vaccinees. Conclusions: Our ES setup has high sensitivity for polio and non-PV HEV detection, generating nearly whole-genome sequence information. Such ES systems provide critical information to assist the polio eradication endgame and contribute to the improvement of our understanding of HEV circulation patterns in humans.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01072360&limit=30&person=true