Imperial College London

DrJorgeBernardino de la Serna

Faculty of MedicineNational Heart & Lung Institute

Senior Lecturer in Inhalation Toxicology and Pharmacology
 
 
 
//

Contact

 

+44 (0)20 7594 3277j.bernardino-de-la-serna Website

 
 
//

Location

 

CubicleSir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Contera:2020:10.1042/ETLS20200350,
author = {Contera, S and de, la Serna JB and Tetley, TD},
doi = {10.1042/ETLS20200350},
journal = {Emerging Topics in Life Sciences},
pages = {551--554},
title = {Biotechnology, nanotechnology and medicine},
url = {http://dx.doi.org/10.1042/ETLS20200350},
volume = {4},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The 1980s mark the starting point of nanotechnology: the capacity to synthesise, manipulate and visualise matter at the nanometre scale. New powers to reach the nanoscale brought us the unprecedented possibility to directly target at the scale of biomolecular interactions, and the motivation to create smart nanostructures that could circumvent the hurdles hindering the success of traditional pharmacological approaches. Forty years on, the progressive integration of bio- and nanotechnologies is starting to produce a transformation of the way we detect, treat and monitor diseases and unresolved medical problems [ 1]. While much of the work remains in research laboratories, the first nano-based treatments, vaccines, drugs, and diagnostic devices, are now receiving approval for commercialisation and clinical use. In this special issue we review recent advances of nanomedical approaches to combat antibiotic resistance, treatment and detection of cancers, targeting neurodegerative diseases, and applications as diverse as dentistry and the treatment of tuberculosis. We also examine the use of advanced smart nanostructured materials in areas such as regenerative medicine, and the controlled release of drugs and treatments. The latter is currently poised to bring ground-breaking changes in immunotherapy: the advent of ‘vaccine implants’ that continuously control and improve immune responses over time. With the increasingly likely prospect of ending the COVID 19 pandemic with the aid of a nanomedicine-based vaccine (both Moderna and BioNTech/Pfizer vaccines are based on lipid nanoparticle formulations), we are witnessing the coming of age of nanomedicine. This makes it more important than ever to concentrate on safety: in parallel to pursuing the benefits of nanomedine, we must strengthen the continuous focus on nanotoxicology and safety regulation of nanomedicines that can deliver the medical revolution that is within our grasp.
AU - Contera,S
AU - de,la Serna JB
AU - Tetley,TD
DO - 10.1042/ETLS20200350
EP - 554
PY - 2020///
SN - 2397-8554
SP - 551
TI - Biotechnology, nanotechnology and medicine
T2 - Emerging Topics in Life Sciences
UR - http://dx.doi.org/10.1042/ETLS20200350
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000599950400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/85755
VL - 4
ER -