Imperial College London

DrJose ElielCamargo-Molina

Faculty of Natural SciencesDepartment of Physics

Academic Visitor



+44 (0)20 7594 7833j.camargo-molina




H508Blackett LaboratorySouth Kensington Campus





My research explores the connection between particles, the smallest things we know, and our Universe, the largest there is. Our best theory of the particle world, the Standard Model (SM), does not answer important questions about the Universe we observe, such as why there is much more matter than antimatter. Physicists have proposed many theories to address these questions, and I've shown that the very fact that we are here is a test of the validity of such theories, as they often predict an unstable Universe (PLB, 2014). In my research, I have also proposed models that unify nature's forces and address the
SM's shortcomings (PRD, 2017). Lately, I have worked on how the dynamics of the early Universe could have led to gravitational waves that would be clear evidence of physics beyond the SM (JHEP2021).

Beyond my physics research, I've co-founded the Art and Science Initiative, created a multisensory exhibit for the London
Science Museum, and was invited by the UN to a multi-year future-envisioning exercise. I co-host a podcast documenting the journey towards the first feature film written by an AI.



Camargo-Molina JE, Rajantie A, 2023, Phase transitions in de Sitter spacetimes: The stochastic formalism, Physical Review D, Vol:107, ISSN:2470-0010

Camargo-Molina JE, Gonzalez MC, Rajantie A, 2023, Phase transitions in de Sitter spacetimes: Quantum Corrections, Physical Review D, Vol:107, ISSN:2470-0010

AbdusSalam SS, Agocs FJ, Allanach BC, et al., 2022, Simple and statistically sound recommendations for analysing physical theories, Reports on Progress in Physics, Vol:85, ISSN:0034-4885

Bloor S, Gonzalo TE, Scott P, et al., 2021, The GAMBIT Universal Model Machine: from Lagrangians to likelihoods, European Physical Journal C, Vol:81, ISSN:1434-6044

Camargo-Molina JE, Enberg R, Lofgren J, 2021, A new perspective on the electroweak phase transition in the Standard Model Effective Field Theory, Journal of High Energy Physics, ISSN:1029-8479

More Publications