Imperial College London

Professor James Durrant, FRS

Faculty of Natural SciencesDepartment of Chemistry

Professor of Photochemistry
 
 
 
//

Contact

 

+44 (0)20 7594 5321j.durrant Website

 
 
//

Assistant

 

Miss Lisa Benbow +44 (0)20 7594 5883

 
//

Location

 

G22CMolecular Sciences Research HubWhite City Campus

//

Summary

 

Summary

The development of renewable, low cost energy technologies is a key scientific challenge for the 21st century. My group’s primary research interest is the development of new chemical approaches to solar energy conversion – harnessing solar energy either to produce electricity (photovoltaics) or molecular fuels (e.g.: hydrogen). We undertake fundamental scientific studies of new materials and device concepts, aiming to elucidate design principles which enable technological development. Our research is based around using transient laser spectroscopies to undertake photochemical studies of light driven electron and energy transfer reactions. Such studies are undertaken in parallel with device development and functional characterisation, including studies of materials and device stability, employing a wide range of molecular, polymeric and inorganic materials. Control of materials structure on the nanometer length scale is often essential for efficient utilisation of solar energy, and therefore the nano-morphology and the use of nanostructured materials is a key component of our research.

My group’s expertise is focused around photochemistry and physical chemistry. However our research is very much interdisciplinary, with expertise in the group ranging from  inorganic materials synthesis and photoelectrochemistry to device physics. We are fortunate to have many collaborations, both with academic groups and with industry, enabling us to work closely with colleagues working on innovative materials synthesis, theoretical modeling and practical device development and commercialisation, including in particular members of Imperial's Centre for Processable Electronics and Swansea's SPECIFIC IKC.

More details of my research and my research team can be found on my group's website.

Alongside leading my research group at Imperial College, I am leading the Sêr Cymru Solar Initiative based at the SPECIFIC IKC, Swansea University, which compliments the more fundamental scientific studies of my group, and of my colleagues at Imperial College, through the technological development of printed photovoltaic devices.

I am also Director of Imperial's Centre for Processable Electronics, and was founding director  of the UK's Solar Fuels Network.

If you are interested in joining my research group as a postdoctoral researcher, postgraduate student or for an undergraduate internship, please contact Xiaoe Li.

Publications

Journals

Chang Y-H, Carron R, Ochoa M, et al., 2021, Insights from transient absorption spectroscopy into electron dynamics along the Ga-gradient in Cu(In,Ga)Se2 solar cells, Advanced Energy Materials, ISSN:1614-6832

Moss B, Wang Q, Butler K, et al., 2021, Linking in-situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen evolving photocatalysts, Nature Materials, ISSN:1476-1122

Bozal-Ginesta C, Mesa CA, Eisenschmidt A, et al., 2021, Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO2, Chemical Science, ISSN:2041-6520

Wilson AA, Corby S, Francàs L, et al., 2020, The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO3 photoanodes for water oxidation., Phys Chem Chem Phys

Sachs M, Cha H, Kosco J, et al., 2020, Correction to "Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution"., J Am Chem Soc

More Publications