Imperial College London

Professor James Durrant, CBE, FRS

Faculty of Natural SciencesDepartment of Chemistry

Professor of Photochemistry
 
 
 
//

Contact

 

+44 (0)20 7594 5321j.durrant Website

 
 
//

Assistant

 

Miss Lisa Benbow +44 (0)20 7594 5883

 
//

Location

 

G22CMolecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

661 results found

Sotelo-Vazquez C, Quesada-Cabrera R, Ling M, Scanlon DO, Kafizas A, Thakur PK, Lee T-L, Taylor A, Watson GW, Palgrave RG, Durrant JR, Blackman CS, Parkin IPet al., 2017, Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study, ADVANCED FUNCTIONAL MATERIALS, Vol: 27, ISSN: 1616-301X

Semiconductor heterojunctions are used in a wide range of applications including catalysis, sensors, and solar-to-chemical energy conversion devices. These materials can spatially separate photogenerated charge across the heterojunction boundary, inhibiting recombination processes and synergistically enhancing their performance beyond the individual components. In this work, the WO3/TiO2 heterojunction grown by chemical vapor deposition is investigated. This consists of a highly nanostructured WO3 layer of vertically aligned nanorods that is then coated with a conformal layer of TiO2. This heterojunction shows an unusual electron transfer process, where photogenerated electrons move from the WO3 layer into TiO2. State-of-the-art hybrid density functional theory and hard X-ray photoelectron spectroscopy are used to elucidate the electronic interaction at the WO3/TiO2 interface. Transient absorption spectroscopy shows that recombination is substantially reduced, extending both the lifetime and population of photogenerated charges into timescales relevant to most photocatalytic processes. This increases the photocatalytic efficiency of the material, which is among the highest ever reported for a thin film. In allying computational and experimental methods, this is believed to be an ideal strategy for determining the band alignment in metal oxide heterojunction systems.

Journal article

Godin RP, Wang Y, Zwijnenburg MA, Tang J, Durrant Jet al., 2017, Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation, Journal of the American Chemical Society, Vol: 139, Pages: 5216-5224, ISSN: 1520-5126

Carbon nitride (g-C3N4) as a benchmark polymer photocatalyst is attracting significant research interest because of its visible light photocatalytic performance combined with good stability and facile synthesis. However, little is known about the fundamental photophysical processes of g-C3N4, which are key to explain and promote photoactivity. Using time-resolved absorption and photoluminescence spectroscopies, we have investigated the photophysics of a series of carbon nitrides on time scales ranging from femtoseconds to seconds. Free charge carriers form within a 200 fs excitation pulse, trap on the picosecond time scale with trap states in a range of energies, and then recombine with power law decays that are indicative of charge trapping–detrapping processes. Delayed photoluminescence is assigned to thermal excitation of trapped carriers back up to the conduction/valence bands. We develop a simple, quantitative model for the charge carrier dynamics in these photocatalysts, which includes carrier relaxation into an exponential tail of trap states extending up to 1.5 eV into the bandgap. This trapping reduces the efficiency of surface photocatalytic reactions. Deep trapped electrons observed on micro- to millisecond time scales are unable to reduce electron acceptors on the surface or in solution. Within a series of g-C3N4, the yield of these unreactive trapped electrons correlates inversely with H2 evolution rates. We conclude by arguing that the photophysics of these carbon nitride materials show closer parallels with inorganic semiconductors than conjugated polymers, and that the key challenge to optimize photocatalytic activity of these materials is to prevent electron trapping into deep, and photocatalytically inactive, electron trap states.

Journal article

Pont S, Bryant D, Lin CH, Aristidou N, Wheeler S, Ma X, Godin R, Haque S, Durrant JRet al., 2017, Tuning CH 3 NH 3 Pb(I 1-x Br x ) 3 Perovskite Oxygen Stability in Thin Films and Solar Cells, Journal of Materials Chemistry A, Vol: 5, ISSN: 2050-7488

The rapid development of organic–inorganic lead halide perovskites has resulted in high efficiency photovoltaic devices. However the susceptibility of these devices to degradation under environmental stress has so far hindered commercial development, requiring for example expensive device encapsulation. Herein, we have investigated the stability of CH3NH3Pb(I1−xBrx)3 [x = 0–1] thin films and solar cells under controlled humidity, light, and oxygen conditions. We show that higher bromide ratios increase tolerance to moisture, with x = 1 thin films being stable to 120 h of moisture stress. Under light and dry air, partial bromide (x < 1) substitution does not enhance film stability significantly, with the corresponding solar cells degrading within two hours. In contrast, CH3NH3PbBr3 films show excellent stability, with device stability being limited by the organic interlayer. For these x = 1 films, we show that charge carriers are quenched in the presence of oxygen and form superoxide; however in contrast to perovskites containing iodide, this superoxide does not degrade the crystal. Our observations show that iodide limits the oxygen and light stability of CH3NH3Pb(I1−xBrx)3 perovskites, but that CH3NH3PbBr3 provides an opportunity to develop inherently stable high voltage photovoltaic devices and 4-terminal tandem solar cells.

Journal article

Du T, Burgess C, Kim J, Zhang J, Durrant J, McLachlan MAet al., 2017, Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells, Sustainable Energy and Fuels, Vol: 1, Pages: 119-126, ISSN: 2398-4902

Here we report the investigation of controlled PbI2 secondary phase formation in CH3NH3PbI3 (MAPI) photovoltaics through post-deposition thermal annealing, highlighting the beneficial role of PbI2 on device performance. Using high-resolution transmission electron microscopy we show the location of PbI2 within the active layer and propose a nucleation and growth mechanism. We discover that during the annealing that PbI2 forms mainly in the grain boundary regions of the MAPI films and that at certain temperatures the PbI2 formed can be highly beneficial to device performance – reducing current–voltage hysteresis and increasing the power conversion efficiency. Our analysis shows that the MAPI grain boundaries as susceptible areas that, under thermal loading, initiate the conversion of MAPI into PbI2.

Journal article

Durrant J, Simpson A, Abe R, Artero V, Mitlin D, Park N-G, Rumbles G, Sevilla Met al., 2017, Welcome to the first issue of Sustainable Energy & Fuels, SUSTAINABLE ENERGY & FUELS, Vol: 1, Pages: 10-13, ISSN: 2398-4902

Journal article

Pastor E, Le Formal F, Mayer MT, Tilley SD, Gratzel M, Francas Forcada L, Mesa CA, Durrant JRet al., 2017, Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface, Nature Communications, Vol: 8, ISSN: 2041-1723

Multi-electron heterogeneous catalysis is a pivotal element in the (photo)electrochemical generation of solar fuels. However, mechanistic studies of these systems are difficult to elucidate by means of electrochemical methods alone. Here we report a pectroelectrochemical analysis of hydrogen evolution on ruthenium oxide employed as an electrocatalyst and as part of a cuprous oxide based photocathode. We use optical absorbance spectroscopy to quantify the densities of reduced ruthenium oxide species, and correlate these with current densities resulting from proton reduction. This enables us to directly compare the catalytic function of dark and light electrodes. We find that hydrogen evolution is second order in the density of active, doubly reduced species independent of whether these are generated by applied potential or light irradiation. Our observation of a second order rate law allows us to distinguish between the most common reaction paths and propose a mechanism involving thehomolytic reductive elimination of hydrogen.

Journal article

Warnan J, Willkomm J, Ng J, Godin RP, Prantl S, Durrant J, Reisner Eet al., 2017, Solar H₂ evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst-TiO₂ hybrids, Chemical Science, Vol: 8, Pages: 3070-3079, ISSN: 2041-6539

A series of diketopyrrolopyrrole (DPP) dyes with a terminal phosphonic acid group for attachment to metal oxide surfaces were synthesised and the effect of side chain modification on their properties investigated. The organic photosensitisers feature strong visible light absorption (λ = 400 to 575 nm) and electrochemical and fluorescence studies revealed that the excited state of all dyes provides sufficient driving force for electron injection into the TiO2 conduction band. The performance of the DPP chromophores attached to TiO2 nanoparticles for photocatalytic H2 evolution with co-immobilised molecular Co and Ni catalysts was subsequently studied, resulting in solar fuel generation with a dye-sensitised semiconductor nanoparticle system suspended in water without precious metal components. The performance of the DPP dyes in photocatalysis did not only depend on electronic parameters, but also on properties of the side chain such as polarity, steric hinderance and hydrophobicity as well as the specific experimental conditions and the nature of the sacrificial electron donor. In an aqueous pH 4.5 ascorbic acid solution with a phosphonated DuBois-type Ni catalyst, a DPP-based turnover number (TONDPP) of up to 205 was obtained during UV-free simulated solar light irradiation (100 mW cm−2, AM 1.5G, λ > 420 nm) after 1 day. DPP-sensitised TiO2 nanoparticles were also successfully used in combination with a hydrogenase or platinum instead of the synthetic H2 evolution catalysts and the platinum-based system achieved a TONDPP of up to 2660, which significantly outperforms an analogous system using a phosphonated Ru tris(bipyridine) dye (TONRu = 431). Finally, transient absorption spectroscopy was performed to study interfacial recombination and dye regeneration kinetics revealing that the different performances of the DPP dyes are most likely dictated by the different regeneration efficiencies of the oxidised chromophores.

Journal article

Chadwick NP, Kafizas A, Quesada-Cabrera R, Sotelo-Vazquez C, Bawaked SM, Mokhtar M, Al Thabaiti SA, Obaid AY, Basahel SN, Durrant JR, Carmalt CJ, Parkin IPet al., 2017, Ultraviolet Radiation Induced Dopant Loss in a TiO2 Photocatalyst, ACS CATALYSIS, Vol: 7, Pages: 1485-1490, ISSN: 2155-5435

Journal article

Kafizas A, Godin R, Durrant JR, 2017, Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation, SEMICONDUCTORS FOR PHOTOCATALYSIS, Editors: Mi, Wang, Jagadish, Publisher: ELSEVIER ACADEMIC PRESS INC, Pages: 3-46

Book chapter

Collado Fregoso E, Deledalle F, Utzat H, Tuladhar PS, Dimitrov S, Gillett A, Tan C, Zhang W, McCulloch I, Durrant Jet al., 2016, Photophysical study of DPPTT-T/PC70BM blends and solar devices as a function of fullerene loading: an insight into EQE limitations of DPP-based polymers, Advanced Functional Materials, Vol: 27, ISSN: 1616-3028

Diketopyrrolopyrrole (DPP)-based polymers have been consistently used for the fabrication of solar cell devices and transistors, due to the existence of intermolecular short contacts,resulting in high electron and hole mobilities. However, they also often show limited external quantum efficiencies (EQEs). In this contribution we analyze the limitations on EQE by a combined study of exciton dissociation efficiency, charge separation and recombination kinetics in thin films and solar devices of a DPP-based donor polymer, DPPTT-T(thieno[3,2-b]thiophene-diketopyrrolopyrrolecopolymer)blended with varying weight fractions of the fullerene acceptor PC70BM. From the correlations between photoluminescence quenching (PLQ), transient absorption studies and EQEmeasurements, we concludethat the main limitation of photon-to-charge conversion in DPPTT-T/PC70BM devices is poor exciton dissociation. This exciton quenching limit is related to the low affinity/miscibility of the materials, as confirmed by WAXDdiffraction and transmission electron microscopy data, but also to the relatively short DPPTT-T singlet exciton lifetime,possibly associated with highnon-radiative losses. A further strategy to improve EQE in this class of polymers without sacrificing the good extractionproperties in optimized blends is therefore to limit those non-radiative decay processes.

Journal article

Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf R, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec C, Durrant J, McCulloch Iet al., 2016, Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages, Energy & Environmental Science, Vol: 9, Pages: 3783-3793, ISSN: 1754-5706

Optimization of the energy levels at the donor–acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q − Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.

Journal article

Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJ, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch Iet al., 2016, Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells, Nature Materials, Vol: 16, Pages: 363-369, ISSN: 1476-4660

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

Journal article

Fallon KJ, Wijeyasinghe N, Manley EF, Dimitrov SD, Yousaf SA, Ashraf RS, Duffy W, Guilbert AAY, Freeman DME, Al-Hashimi M, Nelson J, Durrant JR, Chen LX, McCulloch I, Marks TJ, Clarke TM, Anthopoulos TD, Bronstein Het al., 2016, Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility, CHEMISTRY OF MATERIALS, Vol: 28, Pages: 8366-8378, ISSN: 0897-4756

Journal article

Sachs M, Pastor E, Kafizas A, Durrant JRet al., 2016, Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO2, Journal of Physical Chemistry Letters, Vol: 7, Pages: 3742-3746, ISSN: 1948-7185

In nanostructured thin films, photogeneratedcharge carriers can access the surface more easily than indense films and thus react more readily. However, the highsurface area of these films has also been associated withenhanced recombination losses via surface states. We hereinuse transient absorption spectroscopy to compare the ultrafastcharge carrier kinetics in dense and nanostructured TiO2films for its two most widely used polymorphs: anatase andrutile. We find that nanostructuring does not enhance recombinationrates on ultrafast timescales, indicating thatsurface state mediated recombination is not a key loss pathwayfor either TiO2 polymorph. Rutile shows faster, and lessintensity-dependent recombination than anatase, which weassign to its higher doping density. For both polymorphs, weconclude that bulk rather than surface recombination is theprimary determinant of charge carrier lifetime.

Journal article

Ma Y, Mesa CA, Pastor E, Kafizas A, Francas L, Le Formal F, Pendlebury SR, Durrant JRet al., 2016, Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode, ACS Energy Letters, Vol: 1, Pages: 618-623, ISSN: 2380-8195

Spectroelectrochemical studies employing pulsed LED irradiation are used to investigate the kinetics of water oxidation on undoped dense bismuth vanadate (BiVO4) photoanodes under conditions of photoelectrochemical water oxidation and compare to those obtained for oxidation of a simple redox couple. These measurements are employed to determine the quasi-steady-state densities of surface-accumulated holes, ps, and correlate these with photocurrent density as a function of light intensity, allowing a rate law analysis of the water oxidation mechanism. The reaction order in surface hole density is found to be first order for ps < 1 nm–2 and third order for ps > 1 nm–2. The effective turnover frequency of each surface hole is estimated to be 14 s–1 at AM 1.5 conditions. Using a single-electron redox couple, potassium ferrocyanide, as the hole scavenger, only the first-order reaction is observed, with a higher rate constant than that for water oxidation. These results are discussed in terms of catalysis by BiVO4 and implications for material design strategies for efficient water oxidation.

Journal article

Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AIet al., 2016, Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water, Chemical Communications, Vol: 52, Pages: 10008-10011, ISSN: 1364-548X

Conjugated microporous polymers (CMPs) have been used as photocatalysts for hydrogen production from water in the presence of a sacrificial electron donor. The relative importance of the linker geometry, the co-monomer linker length, and the degree of planarisation were studied with respect to the photocatalytic hydrogen evolution rate.

Journal article

Casey A, Dimitrov SD, Shakya-Tuladhar P, Fei Z, Nguyen M, Han Y, Anthopoulos TD, Durrant JR, Heeney Met al., 2016, Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance, Chemistry of Materials, Vol: 28, Pages: 5110-5120, ISSN: 0897-4756

We report a systematic study into the effects of cyano substitution on the electron accepting ability of the common acceptor 4,7-bis(thiophen-2-yl)-2,1,3-benzothiadiazole (DTBT). We describe the synthesis of DTBT monomers with either 0, 1, or 2 cyano groups on the BT unit and their corresponding copolymers with the electron rich donor dithienogermole (DTG). The presence of the cyano group is found to have a strong influence on the optoelectronic properties of the resulting donor–acceptor polymers, with the optical band gap red-shifting by approximately 0.15 eV per cyano substituent. We find that the polymer electron affinity is significantly increased by ∼0.25 eV upon addition of each cyano group, while the ionization potential is less strongly affected, increasing by less than 0.1 eV per cyano substituent. In organic photovoltaic (OPV) devices power conversion efficiencies (PCE) are almost doubled from around 3.5% for the unsubstituted BT polymer to over 6.5% for the monocyano substituted BT polymer. However, the PCE drops to less than 1% for the dicyano substituted BT polymer. These differences are mainly related to differences in the photocurrent, which varies by 1 order of magnitude between the best (1CN) and worst devices (2CN). The origin of this variation in the photocurrent was investigated by studying the charge generation properties of the photoactive polymer–fullerene blends using fluorescence and transient absorption spectroscopic techniques. These measurements revealed that the improved photocurrent of 1CN in comparison to 0CN was due to improved light harvesting properties while maintaining a high exciton dissociation yield. The addition of one cyano group to the BT unit optimized the position of the polymer LUMO level closer to that of the electron acceptor PC71BM, such that the polymer’s light harvesting properties were improved without sacrificing either the exciton dissociation yield or device VOC. We also identify that the dr

Journal article

Kasap H, Caputo CA, Martindale BCM, Godin R, Lau VW-H, Lotsch BV, Durrant JR, Reisner Eet al., 2016, Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System, Journal of the American Chemical Society, Vol: 138, Pages: 9183-9192, ISSN: 0002-7863

Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride (NCNCNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The NCNCNx–NiP system showed an activity of 763 μmol (g CNx)−1 h–1 toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h–1, and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of NCNCNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited NCNCNx in the presence of an organic substrate can accumulate ultralong-lived “trapped electrons”, which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel.

Journal article

Lee HKH, Li Z, Durrant JR, Tsoi WCet al., 2016, Is organic photovoltaics promising for indoor applications?, Applied Physics Letters, Vol: 108, ISSN: 1077-3118

This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering smallelectronic devices or wireless connected Internet of Things. Three representative polymerbasedOPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]],were selected as the donor materials in blend with fullerene derivatives for comparison under lowlight level condition using fluorescent lamps. PCDTBT based devices are found to be the best performingsystem, generating 13.9 lW/cm2 corresponding to 16.6% power conversion efficiency at300 lx, although PTB7 based devices show the highest efficiency under one sun conditions. Thishigh performance suggests that OPV is competitive to the other PV technologies under low lightcondition despite much lower performance under one sun condition. Different properties of thesedevices are studied to explain the competitive performance at low light level. A low energyconsuming method for maximum power point tracking is introduced for the operation of the OPVdevices. Finally, a 14 cm 14 cm OPV module with 100 cm2 active area is demonstrated for realapplications. These findings suggest that OPV, in particular, PCDTBT based devices, could be apromising candidate for indoor applications.

Journal article

Morris MR, Pendlebury S, Hong J, Dunn S, Durrant Jet al., 2016, Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion, Advanced Materials, Vol: 28, Pages: 7123-7128, ISSN: 0935-9648

Spontaneous polarization is shown to enhance the lifetimes of photogenerated species in BaTiO3. This is attributed to polarization-induced surface band bending acting as a thermal barrier to electron/hole recombination. The study indicates that the efficiencies of solar cells and solar fuels devices can be enhanced by the use of ferroelectric materials.

Journal article

Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf A, Nielsen CB, Tan C, Dimitrov S, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec C, Salleo A, Durrant J, Mcculloch Iet al., 2016, High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor, Nature Communications, Vol: 7, Pages: 1-11, ISSN: 2041-1723

Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

Journal article

Ma Y, Kafizas A, Pendlebury SR, Le Formal F, Durrant JRet al., 2016, Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation, Advanced Functional Materials, Vol: 26, Pages: 4951-4960, ISSN: 1616-301X

This paper employs photoinduced absorption and electrochemical techniques to analyze the charge carrier dynamics that drive photoelectrochemical water oxidation on bismuth vanadate (BiVO4), both with and without cobalt phosphate (CoPi) co-catalyst. These results are correlated with spectroelectrochemical measurements of CoII oxidation to CoIII in a CoPi/FTO (fluorine doped tin oxide) electrode during dark electrocatalytic water oxidation. Electrocatalytic water oxidation exhibits a non-linear dependence on CoIII density, with a sharp onset at 1 × 1017 CoIII cm−2. These results are compared quantitatively with the degree of CoPi oxidation observed under conditions of photoinduced water oxidation on CoPi–BiVO4 photoanodes. For the CoPi–BiVO4 photoanodes studied herein, ≤5% of water oxidation proceeds from CoPi sites, making the BiVO4 surface the predominant water oxidation site. This study highlights two key factors that limit the ability of CoPi to improve the catalytic performance of BiVO4: 1) the kinetics of hole transfer from the BiVO4 to the CoPi layer are too slow to effectively compete with direct water oxidation from BiVO4; 2) the slow water oxidation kinetics of CoPi result in a large accumulation of CoIII states, causing an increase in recombination. Addressing these factors will be essential for improving the performance of CoPi on photoanodes for solar-driven water oxidation.

Journal article

Chen H, Bryant D, Troughton J, Kirkus M, Neophytou M, Miao X, Durrant JR, McCulloch Iet al., 2016, One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells, Chemistry of Materials, Vol: 28, Pages: 2515-2518, ISSN: 1520-5002

Journal article

Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchuangchutchaval T, Wheeler S, Durrant JR, Haque SAet al., 2016, Correction: Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy & Environmental Science, Vol: 9, Pages: 1850-1850, ISSN: 1754-5706

Journal article

Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant JR, Haque SAet al., 2016, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy and Environmental Science, Vol: 9, Pages: 1655-1660, ISSN: 1754-5692

Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions. When exposed to both light and dry air, unencapsulated MeNH3PbI3 solar cells rapidly degrade on timescales of minutes to a few hours. This rapid degradation is also observed under electrically bias driven current flow in the dark in the presence of O2. In contrast, significantly slower degradation is observed when the MeNH3PbI3 devices are exposed to moisture alone (e.g. 85% relative humidity in N2). We show that this light and oxygen induced degradation can be slowed down by the use of interlayers that are able to remove electrons from the perovskite film before they can react with oxygen to form O2-. These observations demonstrate that the operational stability of electronic and optoelectronic devices that exploit the electron transporting properties of MeNH3PbI3 will be critically dependent upon the use of suitable barrier layers and device configurations to mitigate the oxygen sensitivity of this remarkable material.

Journal article

Brinkert K, Le formal F, Li X, Durrant J, Rutherford AW, Fantuzzi Aet al., 2016, Photocurrents from photosystem II in a metal oxide hybrid system: electron transfer pathways, Biochimica et Biophysica Acta-Bioenergetics, Vol: 1857, Pages: 1497-1505, ISSN: 0005-2728

We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidising enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed.

Journal article

Lindquist RJ, Phelan BT, Reynal A, Margulies EA, Shoer LE, Durrant JR, Wasielewski MRet al., 2016, Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells, Journal of Materials Chemistry A, Vol: 4, Pages: 2880-2893, ISSN: 2050-7496

Perylene-3,4-dicarboximide (PMI) based chromophores have demonstrated the ability to inject electrons into TiO2 for dye-sensitized solar cell applications and to accept electrons from metal complexes relevant to water oxidation, but they are nearly unexplored for use in photoelectrochemical cells (PECs) for solar fuels generation. A series of related PMIs with high oxidation potentials and carboxylate binding groups was synthesized and investigated for this purpose. Charge injection and recombination dynamics were measured using transient absorption (TA) spectroscopy on the picosecond to second timescales. The dynamics and electron injection yields were correlated with the PMI energetics and structures. Injection began in less than 1 ps for the dye with the best performance and a significant charge-separated state yield remained at long times. Finally, this chromophore was used to oxidize a covalently bound water oxidation precatalyst following electron injection into TiO2 to demonstrate the utility of the dyes for use in PECs.

Journal article

Kafizas A, Wang X, Pendlebury SR, Barnes P, Ling M, Sotelo-Vazquez C, Quesada-Cabrera R, Li C, Parkin IP, Durrantt JRet al., 2016, Where Do Photogenerated Holes Go in Anatase:Rutile TiO<sub>2</sub>? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime, JOURNAL OF PHYSICAL CHEMISTRY A, Vol: 120, Pages: 715-723, ISSN: 1089-5639

Journal article

Morais A, Longo C, Araujo JR, Barroso M, Durrant JR, Nogueira AFet al., 2016, Nanocrystalline anatase TiO<sub>2</sub>/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, Vol: 18, Pages: 2608-2616, ISSN: 1463-9076

Journal article

Dimitrov SD, Schroeder BC, Nielsen CB, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant JRet al., 2016, Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells, Polymers, Vol: 8, ISSN: 2073-4360

The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00152033&limit=30&person=true&page=8&respub-action=search.html