Imperial College London

Dr James Freeman

Faculty of EngineeringDepartment of Chemical Engineering

Academic Visitor
 
 
 
//

Contact

 

+44 (0)20 7594 1442j.freeman12

 
 
//

Location

 

425Bone BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

25 results found

Najjaran Kheirabadi A, Freeman J, Ramos Cabal A, Markides Cet al., 2019, Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator, Applied Energy, Vol: 256, ISSN: 0306-2619

Diffusion absorption refrigeration (DAR) is a small-scale cooling technology that can be driven purely by thermal energy without the need for electrical or mechanical inputs. In this work, a detailed experimental evaluation was undertaken of a newly-proposed DAR unit with a nominal cooling capacity of 100~W, aimed at solar-driven cooling applications in warm climates. Electrical cartridge heaters were used to provide the thermal input which was varied in the range 150-700 W, resulting in heat source temperatures of 175--215 C measured at the generator. The cooling output during steady-state operation was determined from the power consumed by an electric heater used to maintain constant air temperature in an insulated box constructed around the evaporator. Tests were performed with the DAR system configured with the default manufacturer's settings (22 bar charge pressure and 30 % ammonia concentration). The measured cooling output (to air) across the range of generator heat inputs was 24--108 W, while the coefficient of performance (COP) range was 0.11--0.26. The maximum COP was obtained at a generator heat input of 300 W. Results were compared to performance predictions from a steady-state thermodynamic model of the DAR cycle, showing a reasonable level of agreement at the nominal design point of system, but noteworthy deviations at part-load/off-design conditions. Temperature measurements from the experimental apparatus were used to evaluate assumptions used in the estimation of the model state point parameters and examine their influence on the predicted system performance.

Journal article

Guarracino I, Freeman J, Ramos A, Kalogirou SA, Ekins-Daukes NJ, Markides CNet al., 2019, Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions, Applied Energy, Vol: 240, Pages: 1014-1030, ISSN: 0306-2619

Hybrid photovoltaic-thermal (PVT) collectors have been proposed for the combined generation of electricity and heat from the same area. In order to predict accurately the electrical and thermal energy generation from hybrid PVT systems, it is necessary that both the steady-state and dynamic performance of the collectors is considered. This work focuses on the performance characterisation of non-concentrating PVT collectors under outdoor conditions. A novel aspect concerns the application of existing methods, adapted from relevant international standards for flat plate and evacuated tube solar-thermal collectors, to PVT collectors for which there is no formally established testing methodology at present. Three different types of PVT collector are tested, with a focus on the design parameters that affect their electrical and thermal performance during operation. Among other results, we show that a PVT collector suffers a 10% decrease in thermal efficiency when the electricity conversion is close to the maximum power point compared to open-circuit mode, and that a poor thermal contact between the PV laminate and the copper absorber can lead to a significant deterioration in thermal performance. The addition of a glass cover improves the thermal efficiency, but causes electrical performance losses that vary with the glass transmittance and the solar incidence angle. The reduction in electrical efficiency at large incidence angles is more significant than that due to elevated temperatures representative of water-heating applications. Dynamic performance is characterised by imposing a step change in irradiance in order to quantify the collector time constant and effective heat capacity. This paper demonstrates that PVT collectors are characterised by a slow thermal response in comparison to ordinary flat plate solar-thermal collectors, due to the additional thermal mass of the PV layer. A time constant of ∼8 min is measured for a commercial PVT module, compared to <

Journal article

Harraz AA, Freeman J, Wang K, Mac Dowell N, Markides CNet al., 2019, Diffusion-absorption refrigeration cycle simulations in gPROMS using SAFT-γ Mie, Energy Procedia, Vol: 158, Pages: 2360-2365, ISSN: 1876-6102

Diffusion-absorption refrigeration (DAR) is a clean thermally-powered refrigeration technology that can readily be activated by low- to medium-grade renewable heat. There is an ongoing interest in identifying or designing new working fluids for performance improvement, particularly in solar applications with non-concentrating solar collectors providing heat at temperatures < 150 °C. In this work, the state-of-the-art statistical associating fluid theory (SAFT) is adopted for predicting the thermodynamic properties of suitable DAR working fluids. A first-law thermodynamic analysis is performed in the software environment gPROMS for a DAR cycle using ammonia as the refrigerant, water as the absorbent and hydrogen as the auxiliary gas. The simulation results show good agreement with experimental data generated in a prototype DAR system with a nominal cooling capacity of 100 W. In particular, at a charge pressure of 17 bar and when delivering cooling at 5 °C, the model results agree with experimental COP data to within ± 7 % over a range of heat inputs from 150 to 500 W. The maximum coefficient of performance (COP) is estimated to be 0.24 at a heat input of 250 W. The group-contribution SAFT-γ Mie equation of state is of particular interest as it offers good agreement with experimental data and provides flexibility in extending the model to test different working fluids with a high degree of fidelity. A methodology is also presented that allows the DAR thermodynamic analysis and working-fluid modelling to be integrated into a more general technology optimisation framework.

Journal article

Harraz AA, Najjaran A, Sacks R, Freeman J, Olympios AV, Mac Dowell N, Markides CNet al., 2019, Experimentally validated simulations of a diffusion absorption refrigeration system, Pages: 1045-1056

Diffusion absorption refrigeration (DAR) is a small-scale, thermally-driven cooling technology that operates passively without the need for mechanical or electrical inputs. Due to the lack of a compressor, DAR systems are charged with an auxiliary gas to enable single-pressure operation. Although DAR units have a simple construction and are easy to operate, their modelling presents challenges arising from the complexity of the physical processes that take place and govern operation. Few experimentally validated models offer a reliable prediction of the DAR system performance over a wide range of operating conditions. This paper combines results from experimental investigations on a laboratory-scale ammonia-water-hydrogen DAR system with a nominal cooling output of ∼100 W with model predictions of the performance characteristics of this system. In previous work, the DAR cycle was modelled using first-law thermodynamic analysis in the gPROMS environment for a single cooling delivery temperature and a single-charge pressure, using a group-contribution equation-of-state based on the statistical associating fluid theory (SAFT). Here, extended model validation is performed to investigate the effect of key operating parameters on system performance, including the generator heat input (varied from 150 W to 700 W), the cooling delivery temperature (set to two levels: 5 ◦C and 23 ◦C) and the system charge pressure (18 bar and 21 bar). The measured coefficient of performance (COP) was between 0.02 and 0.29. The present model predicts the maximum COP well over the heat-input range from 250 W to 550 W. Hence, the model shows good agreement with experiments, particularly when the heat-input rate is at or below the system’s design-point. Conclusions are drawn concerning the ability of models to predict this complex technology, with emphasis on part-load and off-design operation which is crucial, e.g., in solar applications.

Conference paper

Herrando M, Ramos A, Freeman J, Zabalza I, Markides CNet al., 2018, Technoeconomic modelling and optimisation of solar combined heat and power systems based on flat-box PVT collectors for domestic applications, Energy Conversion and Management, Vol: 175, Pages: 67-85, ISSN: 0196-8904

We investigate solar combined heat and power (S-CHP) systems based on hybrid photovoltaic-thermal (PVT) collectors for the simultaneous provision of domestic hot water (DHW), space heating (SH) and power to single- family homes. The systems include PVT collectors with a polycarbonate flat-box structure design, a water storage tank, an auxiliary heater and a battery storage subsystem. A methodology is developed for modelling the en- ergetic and economic performance of such PVT-based S-CHP systems, which is used to optimally size and operate systems for covering the energy demands of single-family reference households at three selected locations: Athens (Greece), London (UK) and Zaragoza (Spain). The results show that optimised systems are capable of covering ∼65% of the annual household electricity demands in Athens, London and Zaragoza when employing 14.0, 17.0 and 12.4 m2 collector array areas respectively, while also covering a significant fraction of the thermal energy demands in Athens (∼60%) and Zaragoza (∼45%); even in London, almost 30% of the reference household’s thermal demand is covered by such a system. A corresponding economic analysis reveals that, despite the suitability of Athens’ weather conditions for implementing such solar-energy systems, the payback time (PBT) of the optimised S-CHP system in Athens is 15.6 years in contrast to the 11.6 years predicted for Zaragoza, due to the lower electricity prices in Greece. On the other hand, the high carbon emission factor of the electricity grid in Greece makes these systems particularly promising at this location. Specifically, the in- vestigated systems have the potential to displace 3.87, 1.65 and 1.54 tons of CO2 per year in Athens, London and Zaragoza, when substituting the conventional means for household energy provision (i.e. grid electricity and gas- fired boilers). Furthermore, it is demonstrated that the optimised systems outperform benchmark equivalent systems comprisin

Journal article

Ramos A, Chatzopoulou MA, Freeman J, Markides Cet al., 2018, Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment, Applied Energy, Vol: 228, Pages: 755-765, ISSN: 0306-2619

Energy security, pollution and sustainability are major challenges presently facing the international community, in response to which increasing quantities of renewable energy are to be generated in the urban environment. Consequently, recent years have seen a strong increase in the uptake of solar technologies in the building sector. In this work, the potential of a solar combined heat and power (CHP) system based on an organic Rankine cycle (ORC) engine is investigated in a domestic setting. Unlike previous studies that focus on the optimisation of the ORC subsystem, this study performs a complete system optimisation considering both the design parameters of the solar collector array and the ORC engine simultaneously. Firstly, we present thermodynamic models of different collectors, including flat-plate and evacuated-tube designs, coupled to a non-recuperative sub-critical ORC architecture that delivers power and hot water by using thermal energy rejected from the engine. Optimisation of the complete system is first conducted, aimed at identifying operating conditions for which the power output is maximised. Then, hourly dynamic simulations of the optimised system configurations are performed to complete the system sizing. Results are presented of: (i) dynamic 3-D simulations of the solar collectors together with a thermal energy storage tank, and (ii) of an optimisation analysis to identify the most suitable working fluids for the ORC engine, in which the configuration and operational constraints of the collector array are considered. The best performing working fluids (R245fa and R1233zd) are then chosen for a whole-system annual simulation in a southern European climate. The system configuration combining an evacuated-tube collector array and an ORC engine is found to be best-suited for electricity prioritisation, delivering an electrical output of 3,605 kWh/year from a 60 m2 collector array. In addition, the system supplies 13,175 kWh/year in the form of domes

Journal article

Najjaran Kheirabadi A, Harraz AA, Freeman J, Mac Dowell N, Markides CNet al., 2018, Numerical and experimental investigations of diffusion absorption refrigeration systems for use with low temperature heat sources, ECOS 2018 - 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Publisher: ECOS

he diffusion absorption refrigeration (DAR) cycle is a technology of increasing interest thanks to its suitabilityfor providing cooling from a thermal energyinputin a range of applications. Itcan bedistinguished from other absorption refrigeration cycles by its employment of a thermally-driven bubble pump to circulate the working fluid, which gives it anability to operate entirely off-gridwithout an electricity input. In this work,we present results from an experimentalcampaign aimed atcharacterisingthe performance of aprototypeammonia-water-hydrogen DAR system with a nominal cooling capacity of 100 W,over a range of operating conditions, specifically with a view ofadaptingthe system for use in low-temperature applications. In the experiments, the heat input to the DAR generator is provided over a range of temperatures from175to215°Cby using electrical cartridge heaters. The system is charged to 22 bar, and the ammonia mass concentration of the working fluid mixture is 30%. The resulting coefficient of performance (COP) of the system is measured in the range 0.12to 0.26. A new methodology for the selection of optimal working-fluid mixtures using the state-of-the-art, statistical associating fluid theory (SAFT) approach implemented within the process modelling software gPROMS®is also presented. The experimental results will be used for futurevalidation of a thermodynamic model of the cycle. Finally,the performance of the system in a solar application is investigated, with a thermal inputprovided by an array of evacuated tube heat pipe solar collectors. The system pressure and condensation temperature are found to be key factors in determining the performance of solar-DAR systems.

Conference paper

Unamba C, Najjaran Kheirabadi A, Freeman J, Herrando M, Markides Cet al., 2018, High-Efficiency Hybrid PV and Solar-Thermal Combined Cooling and Power Technologies, 3rd Energy Future Conference (EF III)

Solar energy can be used to provide heat or to generate electricity (many land areas in the world have sufficient solar irradiance based on Figure 1). Most solar panels designed for one of these purposes, with electrical photovoltaic (PV) panels being typically less than 20% efficient. PV cells experience a deterioration in efficiency when operated at high temperatures, which occurs when the solar irradiance and generation from such systems are at their highest. Hybrid PV-thermal (PVT) solar collector technology combines PV modules with the contacting flow of a cooling fluid in a number of configurations, and offers advantages when space is at a premium and there is demand for both heat and power [1,2]. By far the most common use of the thermal-energy output from PVT systems is to provide hot water at 50-60 °C for households or commercial use, however, a much wider range of opportunities arises at higher temperatures (typically above 60 °C) where refrigeration cycles can be used.Meanwhile, non-concentrating solar thermal (ST) collectors, such as evacuated tube collectors (ETC), can be designed to operate with a high thermal efficiency in the range 80-200 °C, making them suitable for a wider range of thermodynamic power and cooling cycles, such as the organic Rankine cycle (ORC) and the diffusion absorption refrigeration cycle (DAR), which can be tailored to a particular solar heat source though careful selection of an appropriate working fluid [3,4].In this work, we investigate two alternative system configurations for the provision of solar combined cooling and power (S-CCP) in a distributed domestic application. Both systems use the same reference household energy demand for cooling and power and are constrained by the same total available solar collection area.

Poster

Freeman JP, Najjaran Kheirabadi A, Edwards R, Reid M, Hall R, Ramos A, Markides Cet al., 2017, Testing and simulation of a solar diffusion-absorption refrigeration system for low-cost solar cooling in India, ISES Solar World Congress 2017

Conference paper

Unamba CK, White M, Sapin P, Freeman J, Lecompte S, Oyewunmi OA, Markides CNet al., 2017, Experimental investigation of the operating point of a 1-kW ORC system, 4th International Seminar on ORC Power Systems (ORC), Publisher: Elsevier Science BV, Pages: 875-882, ISSN: 1876-6102

The organic Rankine cycle (ORC) is a promising technology for the conversion of waste heat from industrial processes as well as heat from renewable sources. Many efforts have been channeled towards maximizing the thermodynamic potential of ORC systems through the selection of working fluids and the optimal choice of operating parameters with the aim of improving overall system designs, and the selection and further development of key components. Nevertheless, experimental work has typically lagged behind modelling efforts. In this paper, we present results from tests on a small-scale (1 kWel) ORC engine consisting of a rotary-vane pump, a brazed-plate evaporator and a brazed-plate condenser, a scroll expander with a built-in volume ratio of 3.5, and using R245fa as the working fluid. An electric oil-heater acted as the heat source, providing hot oil at temperatures in the range 120-140 °C. The frequency of the expander was not imposed by an inverter or the electricity grid but depended directly on the attached generator load; both the electrical load on the generator and the pump rotational speed were varied in order to investigate the performance of the system. Based on the generated data, this paper explores the relationship between the operating conditions of the ORC engine and changes in the heat-source temperature, pump and expander speeds leading to working fluid flow rates between 0.0088 kg/s and 0.0337 kg/s, from which performance maps are derived. The experimental data is, in turn, used to assess the performance of both the individual components and of the system, with the help of an exergy analysis. In particular, the exergy analysis indicates that the expander accounts for the second highest loss in the system. Analysis of the results suggests that increased heat-source temperatures, working-fluid flow rates, higher pressure ratios and larger generator loads improve the overall cycle efficiency. Specifically, a 46% increase in pressure ratio from 2.4

Conference paper

Freeman J, Guarracino I, Kalogirou SA, Markides CNet al., 2017, A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal-energy storage, Heat Powered Cycles Conference 2016, Publisher: Elsevier, Pages: 1543-1554, ISSN: 1873-5606

In this paper, we examine integrated thermal energy storage (TES) solutions for a domestic-scale solar combined heat and power (S-CHP) system based on an organic Rankine cycle (ORC) engine and low-cost non-concentrating solar-thermal collectors. TES is a critical element of solar-thermal systems. It can allow, depending on how it is implemented, improved matching to the end-user demands, improved load factors, higher average efficiencies and overall performance, as well as reduced component and system sizes and costs, especially in climates with high solar-irradiance variabilities. The operating temperature range of the TES solution must be compatible with the solar-collector array and with the ORC engine operation in order to maximise the overall performance of the system. Various combinations of phase change materials (PCMs) and solar collectors are compared and the S-CHP system's electrical performance is simulated for selected months in the contrasting climates of Cyprus and the UK. The key performance indicator of the ORC engine (net-work output) and the required TES volume are compared and discussed. The PCM-TES solutions that enable the best summer performance from an ORC engine sized for a nominal ~1-kWe output in combination with a 15-m2 solar collector array result in diurnal volume requirements as low as ~100 L in Cyprus and 400 - 500 L in the UK. However, the required TES volume is strongly in influenced by the choice of operational strategy for the system in order to match the domestic load profiles. In a full-storage strategy in which electrical energy generation from the ORC engine is offset to match the week-day evening peak in demand, it is found that a ~20% higher total daily electrical output per unit storage volume can be achieved with a PCM compared to liquid water as a sensible storage medium. The isothermal operation of the PCM during phase-change allows for a smaller diurnal storage temperature swing and a higher energy conversion efficiency

Conference paper

Najjaran Kheirabadi A, Freeman J, Ramos Cabal A, Markides Cet al., 2017, EXPERIMENTAL PERFORMANCE ANALYSIS OF AN AMMONIA-WATER DIFFUSION ABSORPTION REFRIGERATION CYCLE, ASME 2017 Summer Heat Transfer Conference

Conference paper

Ramos Cabal Alba RA, Chatzopoulou M, Freeman James JF, Markides Christos CNMet al., 2017, Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment, The 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Publisher: ECOS

Recent years have seen a strong increase in the uptake of solar technologies in the built environment. Incombined heat and power (CHP) or cogeneration systems, the thermodynamic and economic ‘value’ of theelectrical output is usually considered to be greater than that of (an equivalent) thermal output, and thereforethe prioritisation of the electrical output in terms of system-level optimisation has been driving much of theresearch, innovation and technology development in this area. In this work, the potential of a solar CHPtechnology based on an organic Rankine cycle (ORC) engine is investigated. We present thermodynamicmodels developed for different collectors, including flat-plate collectors (FPC) and evacuated-tube collectors(ETC) coupled with a non-recuperative sub-critical ORC architecture to deliver power and hot water by usingthermal energy rejected from the engine. Results from dynamic 3-D simulations of the solar collectors togetherwith a thermal energy storage (TES) tank are presented. TES offers an important buffering capability duringperiods of intermittent solar radiation, as well as the potential for demand-side management (DSM). Resultsare presented of an optimisation analysis to identify the most suitable working fluids for the ORC unit, in whichthe configuration and operational constraints of the collector array are taken into account. The most suitableworking fluids (R245fa and R1233zd) are then chosen for a whole-system optimisation performed in a southernEuropean climate. The system configuration with an ETC array is found to be best-suited for electricityprioritisation, delivering an electrical output of 3,605 kWh/yr from a 60 m2 array. In addition, the system supplies13,175 kWh/yr in the form of domestic hot water, which is equivalent to more than 6 times the average annualhousehold demand. A brief cost analysis and comparison with photovoltaic (PV) systems are also performed.

Conference paper

Ramos Cabal A, Chatzopoulou MA, Guarracino I, Freeman J, Markides CNet al., 2017, Hybrid photovoltaic-thermal solar systems for combined heating, coolingand power provision in the urban environment, Energy Conversion and Management, Vol: 150, Pages: 838-850, ISSN: 0196-8904

Solar energy can play a leading role in reducing the current reliance on fossil fuels and in increasing renewable energy integration in the built environment. Hybrid photovoltaic-thermal (PV-T) systems can reach overall efficiencies in excess of 70%, with electrical fficiencies in the range of 15-20% and thermal efficiencies of 50% or higher. In most applications, the electrical output of a hybrid PV-T system is the priority, hence the contacting fluid is used to cool the PV cells to maximise their electrical performance, which imposes a limit on the fluid's downstream use. When optimising the overall output of PV-T systems for combinedheating and cooling provision, this technology can cover more than 60% of the heating and about 50% of the cooling demands of households in the urban environment. To achieve this, PV-T systems can be coupledto heat pumps or absorption refrigeration systems as viable alternatives to vapour-compression systems. This work considers the techno-economic challenges of such systems, when aiming at a low cost per kWh of energy generation of PV-T systems for co- or tri-generation in the housing sector. First, the viability and afordability of the proposed systems are studied in ten European locations, with local weather pro files, using annually and monthly averaged solar-irradiance and energy-demand data. Based on annual simulations, Seville, Rome, Madrid and Bucharest emerge as the most promising locations from those examined, and the most efficient system confi guration involves coupling PV-T panels to water-to-water heat pumps that usethe PV-T thermal output to maximise the system's COP. Hourly resolved transient models are then defi ned in TRNSYS in order to provide detailed estimates of system performance, since it is found that the temporal resolution (e.g. hourly, daily, yearly) of the simulations strongly affects their predicted performance. The TRNSYS results indicate that PV-T systems have the potential to cover 60% of the heating

Journal article

Guarracino I, Freeman J, Markides CN, 2017, Solar heat and power with thermal energy storage in the UK, SolaStor

Solar energy has the potential to cover a high fraction of thedemand for heat and electricity in residential buildings. Fig. 1 showsthe variation in incident solar irradiation received across Europe.In London the annual solar irradiation is ~1100 kWh/m2 per year,while the typical domestic energy consumption per household is~12000 kWh/year for heating and ~4000 kWh/year for electricity.Thus the solar energy received on a rooftop of ~15 m2is enoughpotentially enough to provide the entire annual demand fordomestic energy.Our research focuses on various aspects of two solar technologiesfor the combined provision of heating and power (CHP): solarorganic Rankine cycle systems with low-to-medium temperaturesolar-thermal collectors (Figs. 2-3) and hybrid photovoltaic/thermal(PVT) systems. (Fig.4).

Poster

Ramos Cabal A, Chatzopoulou MA, Guarracino I, Freeman J, Markides CNet al., 2017, Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment, 4th Sustainable Thermal Energy Management International Conference (SusTEM 2017)

Conference paper

Kheirabadi AN, Freeman J, Cabal AR, Markides CNet al., 2017, EXPERIMENTAL INVESTIGATION OF AN AMMONIA-WATER DIFFUSION-ABSORPTION REFRIGERATOR (DAR) AT PART LOAD, ASME Summer Heat Transfer Conference, Publisher: AMER SOC MECHANICAL ENGINEERS

Conference paper

Freeman J, Ramos Cabal A, Mac Dowel N, Markides CNet al., 2016, An experimentally validated model of a solar-cooling system based on an ammonia-water diffusion-absorption cycle, The 8th International Conference on Applied Energy – ICAE2016

An experimentally validated thermodynamic model of a domestic-scale solar-cooling system based on an ammonia-water diffusion-absorption refrigeration (DAR) cycle is presented. The model combines sub-component descriptions of a DAR unit and a suitably sized (matched) solar-collector array, which are validated separately;outdoor tests are performed on an evacuated-tube (ET) collector over a range of solar-irradiance conditions, while a 150-W (nominal rating) DAR unit is tested in the laboratory with a thermal input provided by controlled electrical heaters. A COP of 0.2 is reported for the DARunit when operating with a generator temperature of 155 °C and a system charge pressure of 20.7 bar. Using the experimentally validated solar-cooling system model, it is found that the area of the collector array required to power the system depends strongly on the type of collector. Annual simulations are also performed in various geographical regions order to predict the system’s cooling output. It is found that a single DAR unit with a 3-m2 ET arrayhas the potential to provide 150-200 kWh per year of coolingin a southern European climate, which amounts approximately to the per capita demand for space cooling in residential dwellings in the same region.

Conference paper

Freeman J, Guarracino I, Unamba CK, Oyewunmi OA, Le Brun N, White MT, White MT, Markides CNet al., 2016, Developing a test bed for small-scale ORC expanders in waste-heat recovery applications, 3rd Annual Engine ORC Consortium Workshop

Conference paper

Guarracino I, Freeman J, Markides CN, 2016, Experimental evaluation of a 3-D dynamic solar-thermal collector model under time-varying environmental conditions, ECOS 2016, 29th International conference on Efficiency, Cost, Optimization, Simulation and Environmental impact of Energy Systems

Reliable dynamic models are required for the correct prediction of the performance of solar-thermal collectors under variable solar-irradiance conditions. In this paper we present a 3-dimensional (3-D) dynamic thermal model applied to three different collector geometries: a flat plate collector (FPC), an evacuated tube collector (ETC), and also a hybrid photovoltaic-thermal (PVT) collector. Results from the model are evaluated against real data from a series of dynamic and steady-state experiments performed in Limassol, Cyprus and London, UK. The 3-D model equations are summarised and the test apparatuses and procedures are described. In the transient response tests, the model is found to under-predict the time constant for the ETC and PVT collectors by 35-55%, while for the simpler FPC the time constant is under-predicted by 20-35%. The collector model is also implemented into a wider domestic hot-water system model that includes a hot-water storage tank, in order to assess performance predictions over a diurnal operating period on an intermittently cloudy day. The results are compared to a single-node quasi-steady state model that uses the collector steady-state efficiency coefficients and a single-node dynamic model that uses a lumped collector thermal capacity (determined using experimental and calculation-based methods in the European Standard for solar collector testing). The 3-D model is shown to provide promising results that are within the range predicted by the two single-node dynamic models. For the PVT collector simulated under intermittent conditions, the predicted net daily energy gain to the store is found to be within 2% of experimentally obtained results. By comparison, a quasi-steady state model based on the collector’s steady-state efficiency curve is found to over-predict the thermal energy gain to the store by 8% over the same operating period.

Conference paper

Freeman J, Hellgardt K, Markides CN, 2016, Working Fluid Selection and Electrical Performance Optimisation of a Domestic Solar-ORC Combined Heat and Power System for Year-Round Operation in the UK, Applied Energy, Vol: 186, Pages: 291-303, ISSN: 0306-2619

In this paper, we examine the electrical power-generation potential of adomestic-scale solar combined heating and power (S-CHP) system featuringan organic Rankine cycle (ORC) engine and a 15-m2solar-thermal collectorarray. The system is simulated with a range of organic working fluids andits performance is optimised for operation in the UK climate. The findingsare applicable to similar geographical locations with significant cloud coverage,a low solar resource and limited installation areas. A key feature of thesystem’s design is the implementation of fixed fluid flow-rates during operationin order to avoid penalties in the performance of components suffered atpart-load. Steady operation under varying solar irradiance conditions is providedby way of a working-fluid buffer vessel at the evaporator outlet, whichis maintained at the evaporation temperature and pressure of the ORC. Byincorporating a two-stage solar collector/evaporator configuration, a maximumnet annual electrical work output of 1070 kWh yr−1(continuous averagepower of 122 W) and a solar-to-electrical efficiency of 6.3% is reported withHFC-245ca as the working fluid at an optimal evaporation temperature of126 ◦C (corresponding to an evaporation pressure of 16.2 bar). This is equivalentto ∼ 32% of the electricity demand of a typical/average UK home, andrepresents an improvement of more than 50% over a recent effort by the sameauthors based on an earlier S-CHP system configuration and HFC-245fa asthe working fluid [1]. A performance and simple cost comparison with standalone,side-by-side PV and solar-thermal heating systems is presented.

Journal article

Guarracino I, Freeman J, Markides CN, 2016, Experimental evaluation of a 3-D dynamic solar-thermal collector model under time-varying environmental conditions

Reliable dynamic models are required for the correct prediction of the performance of solar-thermal collectors under variable solar-irradiance conditions. In this paper we present a 3-dimensional (3-D) dynamic thermal model applied to three different collector geometries: a flat plate collector (FPC), an evacuated tube collector (ETC), and also a hybrid photovoltaic-thermal (PVT) collector. Results from the model are evaluated against real data from a series of dynamic and steady-state experiments performed in Limassol, Cyprus and London, UK. The 3-D model equations are summarised and the test apparatuses and procedures are described. In the transient response tests, the model is found to under-predict the time constant for the ETC and PVT collectors by 35-55%, while for the simpler FPC the time constant is under-predicted by 20-35%. The collector model is also implemented into a wider domestic hot-water system model that includes a hot-water storage tank, in order to assess performance predictions over a diurnal operating period on an intermittently cloudy day. The results are compared to a single-node quasi-steady state model that uses the collector steady-state efficiency coefficients and a single-node dynamic model that uses a lumped collector thermal capacity (determined using experimental and calculation-based methods in the European Standard for solar collector testing). The 3-D model is shown to provide promising results that are within the range predicted by the two single-node dynamic models. For the PVT collector simulated under intermittent conditions, the predicted net daily energy gain to the store is found to be within 2% of experimentally obtained results. By comparison, a quasi-steady state model based on the collector’s steady-state efficiency curve is found to over-predict the thermal energy gain to the store by 8% over the same operating period.

Conference paper

Freeman J, Hellgardt K, Markides CN, 2015, An Assessment of Solar-Thermal Collector Designs for Small-Scale Combined Heating and Power Applications in the UK, Heat Transfer Engineering, Vol: 36, Pages: 1332-1347, ISSN: 1521-0537

Journal article

Freeman J, Hellgardt K, Markides CN, 2015, An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications, Applied Energy, Vol: 138, Pages: 605-620, ISSN: 1872-9118

Journal article

Guarracino I, Freeman J, Markides CN, 2014, Dynamic testing and modelling of solar collectors, 14th UK Heat Transfer Conference 2015

Solar-thermal collectors operating under real conditions rarely reach steady-state operation due to temporal fluctuations inthe climate/environmental conditions and thermal loads. Figure 1 shows typical UK weather map. The incident irradiance,the ambient temperature and the wind speed can vary during the day as shown in Figures 2-4. These figures show the datacollected in London at a temporal resolution of 1-minute. As a consequence of the time-varying inputs, collector models thatdescribe dynamic behaviour are required for the accurate prediction of the thermal output and for optimising the controlstrategy of such systems. We develop detailed 3-D thermal sub-models that can be adapted to various geometries orcollector configurations, including vacuum-tube thermal collectors, sheet-and-tube thermal and PV/T collectors.

Poster

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00777960&limit=30&person=true