Imperial College London

Professor Joanna D. Haigh

Faculty of Natural SciencesDepartment of Physics

Distinguished Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 7770j.haigh Website

 
 
//

Assistant

 

Mr Luke Kratzmann +44 (0)20 7594 7770

 
//

Location

 

Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Thomas:2021:10.5194/wcd-2-581-2021,
author = {Thomas, C and Voulgarakis, A and Lim, G and Haigh, J and Nowack, P},
doi = {10.5194/wcd-2-581-2021},
journal = {Weather and Climate Dynamics},
pages = {581--608},
title = {An unsupervised learning approach to identifying blocking events: the case of European summer},
url = {http://dx.doi.org/10.5194/wcd-2-581-2021},
volume = {2},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Atmospheric blocking events are mid-latitude weather patterns, which obstruct the usual path of the polar jet streams. They are often associated with heat waves in summer and cold snaps in winter. Despite being central features of mid-latitude synoptic-scale weather, there is no well-defined historical dataset of blocking events. Various blocking indices (BIs) have thus been suggested for automatically identifying blocking events in observational and in climate model data. However, BIs show significant regional and seasonal differences so that several indices are typically applied in combination to ensure scientific robustness. Here, we introduce a new BI using self-organizing maps (SOMs), an unsupervised machine learning approach, and compare its detection skill to some of the most widely applied BIs. To enable this intercomparison, we first create a new ground truth time series classification of European blocking based on expert judgement. We then demonstrate that our method (SOM-BI) has several key advantages over previous BIs because it exploits all of the spatial information provided in the input data and reduces the dependence on arbitrary thresholds. Using ERA5 reanalysis data (1979–2019), we find that the SOM-BI identifies blocking events with a higher precision and recall than other BIs. In particular, SOM-BI already performs well using only around 20 years of training data so that observational records are long enough to train our new method. We present case studies of the 2003 and 2019 European heat waves and highlight that well-defined groups of SOM nodes can be an effective tool to diagnose such weather events, although the domain-based approach can still lead to errors in the identification of certain events in a fashion similar to the other BIs. We further test the red blocking detection skill of SOM-BI depending on the meteorological variable used to study blocking, including geopotential height, sea level pressure and four variables related to
AU - Thomas,C
AU - Voulgarakis,A
AU - Lim,G
AU - Haigh,J
AU - Nowack,P
DO - 10.5194/wcd-2-581-2021
EP - 608
PY - 2021///
SN - 2698-4016
SP - 581
TI - An unsupervised learning approach to identifying blocking events: the case of European summer
T2 - Weather and Climate Dynamics
UR - http://dx.doi.org/10.5194/wcd-2-581-2021
UR - https://wcd.copernicus.org/articles/2/581/2021/
UR - http://hdl.handle.net/10044/1/90359
VL - 2
ER -