

The Intangible Economy

<u>Jonathan Haskel</u>, Imperial College Business School, Imperial College, London

@haskelecon

RES/ONS/RSS meeting, "Challenges for Economic Statistics in the Digital Age", Wednesday 05 July 2017, 3:00pm - 6:00pm

Joint work with Carol Corrado (The Conference Board, New York), Cecilia Jona-Lasinio (Istat and LUISS Rome), Massimiliano Iommi (Istat and LUISS Rome)

Book project with Stian Westlake "<u>Capitalism without Capital</u>", November 2017. <u>Contents and first chapter</u>.

We need to understand economies

Which used to produce this...

...and now produce this.

What do companies look like?

	Sainsbury's	Microsoft
Sales	24bn	85bn
Assets: Property, equipment		

What do companies look like?

	Sainsbury's	Microsoft
Sales	24bn	85bn
Assets: Property, equipment	10bn	5bn

Capitalism without Capital

Lev on declining informativeness of company accounts.

• Source: (Lev and Gu 2016) Figure 82, p.88

Investment in modern economies

Tangible investment	Intangible investment		
Buildings and structures	Computerised information		
IT equipment (computer hardware, communications equipment)	Software		
Non-computer machinery, equipment and weapons systems	Databases		
Vehicles	Innovative property		
	R&D and mineral exploration		
	Creating entertainment, literary or artistic originals		
	Design		
	Economic competencies		
	Training		
	Market research and branding		
	Business process re-engineering		

New investments mean...

New GDP

$$P^{Q}Q = P^{Y}Y + P^{N}N = P^{C}C + P^{I}I + P^{N}N$$

New sources-of-growth

$$d\ln Q = s_Q^L dlnL + s_Q^K dlnK + s_Q^R dlnR + dlnTFP$$

- This approach helps make sense of
 - Innovation as an investment and spillover, not all just a Solow-type spillover
 - The knowledge economy
 - The creative economy
 - Big data
 - Productivity, TFP and spillovers
- Statistical agencies are starting to collect these data, but only slowly

Data

- Thanks to EU support, series of projects have built on EU-KLEMS
 - COINVEST
 - SPINTAN
 - EIB project
 - www.INTAN-invest.net (unfunded)
- Data set
 - Country-industry-institutional sector-year tangible/intangible investment
 - Years: 1995-2013
 - Industries: A to M, P,Q,R and S
 - Countries:
 - EU15xLU (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, UK
 - NMS: Czech Republic, Hungary, Slovakia and Slovenia
 - USA
- Productivity accounting for subset of countries (<u>www.Spintan.net</u>)
 - GDP/GVA by industry (new investment)
 - Capital prices (new capital assets)
 - TFP

So what's been happening to tangible and intangible investment? The long term...

Intangible and tangible investment over time, US

Intangible and tangible investment over time, UK

Source: Carol Corrado

Source: Peter Goodridge

...shorter term: slowdown in capital services growth since 2008...

Variation over countries...

...correlated with policy-relevant variables...

...including public R&D

Properties of intangibles 1: Accounting conventions

- In company and national accounts, many are unmeasured
- Typical treatment in company accounts
 - If own-account, expensed, not capitalised
 - If bought-in, valued and depreciated
 - If company is sold "goodwill" is valued
 - (some software and R&D can be capitalised under restrictive circumstances e.g. late in development stage)
- Should national accounts stick to company accounts conventions?
 - Treatment asymmetric
 - Varies by industries (e.g. airport landing rights are allowed)
- Implications
 - It not counted at all, it looks like we have some fabulously profitable companies (in return on capital terms i.e. huge sales, no capital.

Properties of intangibles 2: economic properties

- Properties of intangibles- the four "S"s (<u>Haskel/Westlake</u>)
 - Sunk investment cannot be recovered
 - Scalable fixed investment e.g. in Uber software, can be scaled
 - Spillovers knowledge investment can be used by others
 - Synergies investment synergies with other intangible capital and human capital

• Implications:

- Sunk: financing difficulties
- Spillovers: demand for living in cities rises
- Scalable: intangible-intensive companies get relatively larger => frontier gap gets bigger
- Synergies: potentially large wage gains for intangible capital owners

Example of implications of intangibles: scalable

- Are intangibles worsening the productivity gap between leading firms and laggards? (Haskel and Westlake)
- Tangible-intensive industries
 - constant returns,
 - successful companies expand, but are no more productive. Frontier gap stays the same
- Intangible-intensive industries, scalable,
 - Increasing returns
 - successful companies expand and get more productive. Frontier gap widens
- Test: Productivity gap widens (the most in intangible-intensive industries)

The widening productivity gap

The Gap Between the Most Productive Firms and the Rest Is Growing

A look at labor productivity in manufacturing and services.

Source: Andrews, D. C. Criscuolo and P. Gal (2015),

The productivity spread has risen the most in intangibleintensive industries

And if these firms pay higher wages to all workers, wage inequality rises too.

Source: <u>Haskel and Westlake</u>, 2016, using data from SPINTAN and Distributed Microdata project

Example of implications of intangibles: spillovers

- Tangible assets: unlikely to be spillovers
- Intangible assets:
 - If there are spillovers,
 - fall in intangible capital building => fall in TFP growth

Spillovers?

Summary

- Investment is becoming more intangible
- That's not well measured
- If you incorporate it: better understanding of
 - Innovation, creative economy, manufacturing v services, TFP etc.
- What do we find?
 - Big differences: between countries: Greece v Finland
 - Over time: intangible investment did not fall as fast over the recession, but is growing slower
 - Intangible investment correlated with policy instruments e.g. strictness of employment legislation
- So what?
 - Increasing productivity inequality in intangible-intensive sectors => productivity and wage inequality
 - Seems evidence of spillovers: more intangible capital growth, more TFP. So slowdown of intangible capital growth => TFP slowdown

Spares

The UK productivity puzzle

Source: ONS

Accounting for the gap (in 2011)

					% of gap
		Before (00-07)	After (07-11)	Implied gap	explained
1	DlnV/H*	2.54%	-0.47%	12.6	
	Components				
2	Labour	0.22%	0.63%	-1.7	
3	Capital	1.13%	0.99%	0.6	
4	TFP	1.19%	-2.09%	12.9	0%
5	Labour re-allocation	-0.26%	0.23%	-1.9	
	R&D				
6	TFP: without R&D capitalised	1.21%	-2.10%	13.0	-1%
	Capital: premature scrapping				
7	TFP: raise dep rates by 1.25 after 2009	1.19%	-1.53%	10.8	16%
8	TFP: raise dep rates by 1.5 after 2009	1.19%	-0.95%	8.6	33%
	Structural				
9	TFP without Ag/Min/Utils & Financial Services**	1.11%	-1.05%	8.7	33%
	Cyclical				
10	Utilisation (Basu, Fernald, Kimball)	1.28%	-1.50%	11.0	14%
11	Utilisation (Buildings, this paper)	1.24%	-2.00%	12.8	1%

Source: Goodridge, Haskel, Wallis (Economica, 2016)