Imperial College London

Dr James W. Hindley

Faculty of Natural SciencesDepartment of Chemistry

Research Associate/Research Group Manager
 
 
 
//

Contact

 

+44 (0)20 7589 5111 ext 55816j.hindley14 Website

 
 
//

Location

 

207Molecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

11 results found

Zhang S, Contini C, Hindley J, Bolognesi G, Elani Y, Ces Oet al., 2021, Engineering motile aqueous phase-separated droplets via liposome stabilisation, Nature Communications, Vol: 12, Pages: 1-11, ISSN: 2041-1723

There are increasing efforts to engineer functional compartments that mimic cellular behaviours from the bottom-up. One behaviour that is receiving particular attention is motility, due to its biotechnological potential and ubiquity in living systems. Many existing platforms make use of the Marangoni effect to achieve motion in water/oil (w/o) droplet systems. However, most of these systems are unsuitable for biological applications due to biocompatibility issues caused by the presence of oil phases. Here we report a biocompatible all aqueous (w/w) PEG/dextran Pickering-like emulsion system consisting of liposome-stabilised cell-sized droplets, where the stability can be easily tuned by adjusting liposome composition and concentration. We demonstrate that the compartments are capable of negative chemotaxis: these droplets can respond to a PEG/dextran polymer gradient through directional motion down to the gradient. The biocompatibility, motility and partitioning abilities of this droplet system offers new directions to pursue research in motion-related biological processes.

Journal article

Strutt R, Hindley JW, Gregg J, Booth PJ, Harling JD, Law RV, Friddin MS, Ces Oet al., 2021, Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry, Chemical Science, Vol: 12, Pages: 2138-2145, ISSN: 2041-6520

Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.

Journal article

Contini C, Hindley J, Macdonald T, Barritt J, Ces O, Quirke Net al., 2020, Size dependency of gold nanoparticles interacting with model membranes, Communications Chemistry, Vol: 3, Pages: 1-12, ISSN: 2399-3669

The rapid development of nanotechnology has led to an increase in the number and variety of engineered nanomaterials in the environment. Gold nanoparticles (AuNPs) are an example of a commonly studied nanomaterial whose highly tailorable properties have generated significant interest through a wide range of research fields. In the present work, we characterise the AuNP-lipid membrane interaction by coupling qualitative data with quantitative measurements of the enthalpy change of interaction. We investigate the interactions between citrate-stabilised AuNPs ranging from 5 to 60 nm in diameter and large unilamellar vesicles acting as a model membrane system. Our results reveal the existence of two critical AuNP diameters which determine their fate when in contact with a lipid membrane. The results provide new insights into the size dependent interaction between AuNPs and lipid bilayers which is of direct relevance to nanotoxicology and to the design of NP vectors.

Journal article

Haylock S, Friddin M, Hindley J, Rodriguez E, Charalambous K, Booth P, Barter L, Ces Oet al., 2020, Membrane protein mediated bilayer communication in networks of droplet interface bilayers, Communications Chemistry, Vol: 3, ISSN: 2399-3669

Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered ‘tissue-like’ networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.

Journal article

Hindley JW, Law RV, Ces O, 2020, Membrane functionalization in artificial cell engineering, SN Applied Sciences, Vol: 2, ISSN: 2523-3963

Bottom-up synthetic biology aims to construct mimics of cellular structure and behaviour known as artificial cells from a small number of molecular components. The development of this nascent field has coupled new insights in molecular biology with large translational potential for application in fields such as drug delivery and biosensing. Multiple approaches have been applied to create cell mimics, with many efforts focusing on phospholipid-based systems. This mini-review focuses on different approaches to incorporating molecular motifs as tools for lipid membrane functionalization in artificial cell construction. Such motifs range from synthetic chemical functional groups to components from extant biology that can be arranged in a ‘plug-and-play’ approach which is hard to replicate in living systems. Rationally designed artificial cells possess the promise of complex biomimetic behaviour from minimal, highly engineered chemical networks.

Journal article

Hindley JW, Zheleva DG, Elani Y, Charalambous K, Barter LMC, Booth PJ, Bevan CL, Law RV, Ces Oet al., 2019, Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells, Proceedings of the National Academy of Sciences, Vol: 116, Pages: 16711-16716, ISSN: 0027-8424

To date reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multi-compartment-spanning designer pathways that can be utilised to control downstream events inside an artificial cell, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.

Journal article

Karamdad K, Hindley J, Friddin MS, Bolognesi G, Law RV, Brooks NJ, Ces O, Elani Yet al., 2018, Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform, Chemical Science, Vol: 9, Pages: 4851-4858, ISSN: 2041-6520

Giant unilamellar vesicles (GUVs) are a well-established tool for the study of membrane biophysics and are increasingly used as artificial cell models and functional units in biotechnology. This trend is driven by the development of emulsion-based generation methods such as Emulsion Phase Transfer (EPT), which facilitates the encapsulation of almost any water-soluble compounds (including biomolecules) regardless of size or charge, is compatible with droplet microfluidics, and allows GUVs with asymmetric bilayers to be assembled. However, the ability to control the composition of membranes formed via EPT remains an open question; this is key as composition gives rise to an array of biophysical phenomena which can be used to add functionality to membranes. Here, we evaluate the use of GUVs constructed via this method as a platform for phase behaviour studies and take advantage of composition-dependent features to engineer thermally-responsive GUVs. For the first time, we generate ternary GUVs (DOPC/DPPC/cholesterol) using EPT, and by compensating for the lower cholesterol incorporation efficiencies, show that these possess the full range of phase behaviour displayed by electroformed GUVs. As a demonstration of the fine control afforded by this approach, we demonstrate release of dye and peptide cargo when ternary GUVs are heated through the immiscibility transition temperature, and show that release temperature can be tuned by changing vesicle composition. We show that GUVs can be individually addressed and release triggered using a laser beam. Our findings validate EPT as a suitable method for generating phase separated vesicles and provide a valuable proof-of-concept for engineering content release functionality into individually addressable vesicles, which could have a host of applications in the development of smart synthetic biosystems.

Journal article

Hindley JW, Elani Y, McGilvery CM, Ali S, Bevan CL, Law R, Ces Oet al., 2018, Light-triggered enzymatic reactions in nested vesicle reactors, Nature Communications, Vol: 9, Pages: 1-6, ISSN: 2041-1723

Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules affords increased functionality, for example, to initiate enzymatic reactions in the vesicle interior with spatiotemporal control. Here we report a system composed of nested vesicles where the inner compartments act as phototransducers, responding to ultraviolet irradiation through diacetylene polymerisation-induced pore formation to initiate enzymatic reactions. The controlled release and hydrolysis of a fluorogenic β-galactosidase substrate in the external compartment is demonstrated, where the rate of reaction can be modulated by varying ultraviolet exposure time. Such cell-like nested microreactor structures could be utilised in fields from biocatalysis through to drug delivery.

Journal article

Salzmann CG, Slater B, Radaelli PG, Finney JL, Shephard JJ, Rosillo-Lopez M, Hindley Jet al., 2016, Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition, JOURNAL OF CHEMICAL PHYSICS, Vol: 145, ISSN: 0021-9606

Journal article

Messager L, Burns JR, Kim J, Cecchin D, Hindley J, Pyne ALB, Gaitzsch J, Battaglia G, Howorka Set al., 2016, Biomimetic hybrid nanocontainers with selective permeability, Angewandte Chemie International Edition, Vol: 55, Pages: 11106-11109, ISSN: 1521-3757

Chemistry plays a crucial role in creating synthetic analogues of biomacromolecular structures. Of particular scientific and technological interest are biomimetic vesicles that are inspired by natural membrane compartments and organelles but avoid their drawbacks, such as membrane instability and limited control over cargo transport across the boundaries. In this study, completely synthetic vesicles were developed from stable polymeric walls and easy‐to‐engineer membrane DNA nanopores. The hybrid nanocontainers feature selective permeability and permit the transport of organic molecules of 1.5 nm size. Larger enzymes (ca. 5 nm) can be encapsulated and retained within the vesicles yet remain catalytically active. The hybrid structures constitute a new type of enzymatic nanoreactor. The high tunability of the polymeric vesicles and DNA pores will be key in tailoring the nanocontainers for applications in drug delivery, bioimaging, biocatalysis, and cell mimicry.

Journal article

Zhang S, Contini C, Hindley J, Bolognesi G, Elani Y, Ces Oet al., Engineering motile aqueous phase-separated droplets via liposome stabilisation, Publisher: Research Square

<jats:title>Abstract</jats:title> <jats:p>There are increasing efforts to engineer functional compartments that mimic aspects of cellular behaviour in a drive to construct an artificial cell from the bottom-up. One behaviour that is receiving particular attention is motility, due to its biotechnological potential and the fact that movement of discrete cells is a ubiquitous feature of living systems. Many existing platforms make use of the Marangoni effect to achieve motion in water/oil (w/o) droplet systems. However, most of these systems are unsuitable for biological applications due to issues with biocompatibility caused by the presence of oil phases. Here we report a biocompatible all aqueous (w/w) PEG/dextran Pickering-like emulsion system consisting of liposome-stabilized cell-sized droplets, where the stability can be easily tuned by adjusting liposome composition and concentration. We demonstrate that the compartments are capable of negative chemotaxis: if water is introduced into the emulsion system, these droplets can respond through directional motion away from PEG in the continuous phase and down to the polymer gradient with a velocity change proportional to the rearrangement of liposome stabilisers in the PEG/dextran interface. The biocompatibility, motility and partitioning abilities of this novel droplet system offers new directions to pursue research in motion-related biological processes.</jats:p>

Working paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01010139&limit=30&person=true