Imperial College London

ProfessorJohnKilner

Faculty of EngineeringDepartment of Materials

Senior Research Investigator
 
 
 
//

Contact

 

+44 (0)20 7594 6745j.kilner Website

 
 
//

Location

 

214Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Kilner:2018:10.1039/c8cp02797h,
author = {Kilner, J and Shen, Z and Skinner, SJ},
doi = {10.1039/c8cp02797h},
journal = {Physical Chemistry Chemical Physics},
pages = {18279--18290},
title = {Electrical conductivity and oxygen diffusion behaviour of the (La0.8Sr0.2)0.95CrxFe1-xO3-δ (x=0.3, 0.5 and 0.7) A-site deficient perovskites},
url = {http://dx.doi.org/10.1039/c8cp02797h},
volume = {20},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Lanthanum strontium chromite ferrite ((La0.8Sr0.2)0.95CrxFe1−xO3−δ, LSCrF) pellets with 5% A-site deficiency were fabricated and the electrical conductivity and oxygen diffusion behaviour with different Cr substitution levels (x = 0.3, 0.5 and 0.7) were investigated. As the Cr content increased, the electrical conductivity increased and then a maximum value was achieved at x = 0.7. In the oxygen diffusion studies, all the measured materials present good surface exchange rates (>9 × 10−8 cm s−1 at 900 °C) while the bulk diffusivity of the investigated materials decreased as the Cr substitution level increased: at 900 °C the oxygen diffusion coefficients of the LSCrF materials (x = 0.3, 0.5 and 0.7) are 1.1 × 10−10 cm2 s−1, 3.7 × 10−12 cm2 s−1 and 8.6 × 10−13 cm2 s−1, respectively. Oxygen diffusion in the perovskite materials (LSCrF) is shown to be bulk diffusion limited and it was found that analysis on this type of material using the line scan mode in Time-of-Flight Secondary Ion Mass Spectrometry may result in significant underestimation of the surface exchange coefficient due to the oxygen saturation, while the depth profile mode provides more reliable results but the obtained surface exchange coefficients may also only reach a lower limit. Moreover, fast grain boundary diffusion behaviour was observed in the LSCrF (x = 0.7) material and the Le Claire, and Chung and Wuensch approximations were applied to analyse the oxygen diffusion profiles. For this material, the two approximations provided similar results for the grain boundary product (Dgbδ) and under the assumption that the width of a grain boundary is on the nanometre scale, the oxygen diffusion coefficient of the grain boundaries was about 3–4 orders of magnitude higher than that of the bulk at temperatures ≤900 °C.
AU - Kilner,J
AU - Shen,Z
AU - Skinner,SJ
DO - 10.1039/c8cp02797h
EP - 18290
PY - 2018///
SN - 1463-9076
SP - 18279
TI - Electrical conductivity and oxygen diffusion behaviour of the (La0.8Sr0.2)0.95CrxFe1-xO3-δ (x=0.3, 0.5 and 0.7) A-site deficient perovskites
T2 - Physical Chemistry Chemical Physics
UR - http://dx.doi.org/10.1039/c8cp02797h
UR - http://hdl.handle.net/10044/1/61681
VL - 20
ER -