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1. Lecture 1 (17 October)

In the first part of this course, we will study semialgebraic geometry over the field
of Puiseux series. Algebraic geometry over a field F is the study of sets defined by
polynomial equations over F . In semialgebraic geometry, we extend our language
by adding an extra structure on F that we can use to define a larger class of sets.
The most classical example is the case where F = R and we consider the ordering
≤ on R. Semialgebraic sets over R are then subsets of Rn that can be defined by
polynomial equations and inequalities. In the case where F is the field of Puiseux
series, the extra structure we consider is given by the t-adic valuation.

1.1. The field of Puiseux series. Let k be an algebraically closed field of
characteristic zero. The ring k[[t]] of formal power series over k is defined as

k[[t]] = {
∞∑
i=0

ait
i | ai ∈ k for all i}

with the obvious operations of addition and multiplication. This is a local ring with
maximal ideal (t), since an element

∑∞
i=0 ait

i in k[[t]] is invertible if and only if the
constant term a0 is different from zero. The residue field of this local ring is equal
to k. The ring k[[t]] is domain, and its quotient field is the field of formal Laurent
series

k((t)) = {
∞∑

i=N

ait
i |N ∈ Z, ai ∈ k for all i}.

This field is not algebraically closed: the element t does not have a d-th root for
any integer d ≥ 2. It turns out that this is the only obstruction: we obtain an
algebraic closure of k((t)) by adding a d-th root of t for all d ≥ 2. Since k(( d

√
t)) is a

subfield of k(( e
√
t)) whenever d divides e, we can write this algebraic closure as an

increasing union

K =
⋃
d>0

k((t1/d)).

The field K is called the field of Puiseux series over k. The fact that
it is algebraically closed was essentially proved by Newton in his study of
parameterizations of branches of plane curves; it was rediscovered almost 200
years later by Puiseux. The proof provides an algorithmic method to find roots
of polynomials over K by an approximation argument that uses the co-called
Newton polygon. An elementary introduction, which also explains the relation
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with the geometry of plane curves, can be found in Chapter 2 of “Singular points
of plane curves” by C.T.C. Wall (2004). Beware that the assumption that k has
characteristic zero is essential.

Exercise 1.1.1. Show that, if k has characteristic p > 0, then the equation xp −
tx = 1 has no solutions in K.

On top of the algebraic structure, the field K carries the t-adic valuation

v : K∗ → Q,

∞∑
i=N

ait
i/d 7→ N/d

where N is an integer, d is a positive integer, and the coefficients ai are elements
of k such that aN ̸= 0. In other words, the t-adic valuation of an element of K∗

is the smallest exponent of t that appears in the t-adic expansion with non-zero
coefficient. We extend v to the whole of K by setting v(0) = ∞. The following
exercise shows that the t-adic valuation v satisfies the usual axioms of a valuation.

Exercise 1.1.2. Show that for all non-zero elements a and b of K, we have

(1) v(ab) = v(a) + v(b);
(2) v(a + b) ≥ min{v(a), v(b)}.

These axioms imply that

R = {a ∈ K | v(a) ≥ 0}

is a subring of K, called the valuation ring of v, and that

m = {a ∈ K | v(a) > 0}

is an ideal in R. Moreover, K is the quotient field of R (since we can push any
element of K into R by multiplying with a large power of an element with positive
valuation) and the ideal m is the unique maximal ideal of R (since every element a
in R\m has valuation zero, so that its inverse in K has valuation zero and therefore
still lies in R). It follows that R is a local integral domain.

Explicitly, we have

R =
⋃
d>0

k[[t1/d]]

(Puiseux series without negative exponents). The maximal ideal m is generated by
the elements t1/d with d > 0, but not by any finite number of them, so that the
ring R is not noetherian. The residue field of R is equal to k: the ring morphism

R → k,

∞∑
i=0

ait
i/d 7→ a0

that maps an element of R to its constant term is surjective, and its kernel is the
maximal ideal m.

An equivalent way to think about (real-valued) valuations is in terms of absolute
values: we can transform v into an absolute value | · | on K by setting |a| =
exp(−v(a)) for every a in K (with the convention that exp(−∞) = 0). We can think
of R and m as the closed, resp. open, unit disk in K: we have R = {a ∈ K | |a| ≤ 1}
and m = {a ∈ K | |a| < 1}.
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It follows from Axiom 2 in Exercise 1.1.2 that this absolute value satisfies
a stronger version of the triangle inequality, the so-called ultrametric or non-
archimedean triangle inequality:

|a + b| ≤ max{|a|, |b|}.
This drastically affects the geometry in K; for instance, it implies that all triangles
are isosceles, and every point of a closed disk is a center of the disk. This is the
starting point for the theory of non-archimedean geometry, which lie beyond the
scope of this course.

1.2. Semialgebraic sets. Using the t-adic valuation v on K, we can extend the
class of geometric objects from algebraic varieties to so-called semialgebraic sets
over K.

Definition 1.2.1. Let n be a positive integer. A subset S of Kn is called
semialgebraic if we can write it as a finite Boolean combination of sets of the form

{a ∈ Kn | v(f(a)) ≥ v(g(a))}
with f, g ∈ K[x1, . . . , xn].

Finite Boolean combinations are formed by a finite succession of the following
operations: finite intersections, finite unions and complements.

Exercise 1.2.2. Let f and g be polynomials in K[x1, . . . , xn]. Show that

{a ∈ Kn | v(f(a))□v(g(a))}
is semialgebraic when □ is any of the following symbols: ≥,≤, >,<,=.

Example 1.2.3. A subset of Kn is called constructible if it can be written as a
finite Boolean combination of sets of the form

{a ∈ Kn | f(a) = 0}
with f ∈ K[x1, . . . , xn]. Every constructible set is semialgebraic, because f(a) = 0
if and only if v(f(a)) ≥ v(0).

Thus, we recover all the sets from algebraic geometry as a special subclass of
semialgebraic sets. However, the class of semialgebraic sets is much larger, as
illustrated by the following exercise.

Exercise 1.2.4. Show that every constructible set in K is finite or has finite
complement. Deduce that R and m are semialgebraic sets in K that are not
constructible.

We will now discuss two more elaborate constructions of semialgebraic sets that
show how they arise naturally in algebraic geometry.

1.3. The Milnor fibration: topology. Let f be a non-constant polynomial in
C[x1, . . . , xn] and assume that f(0) = 0. Then f defines a polynomial map f : Cn →
C and a hypersurface

V (f) = {a ∈ Cn | f(a) = 0}.
For now, we can think of V (f) simply as a topological subspace of Cn. We would like
to understand the topology of V (f) around the point 0 in Cn. If 0 is not a critical
point of f , then this is easy: the implicit function theorem implies that 0 has an
open neighbourhood in V (f) that is homeomorphic to Cn−1. The topology becomes
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much more intricate when 0 is a critical point of f . An important tool in this context
is the Milnor fibration. It was constructed in a slightly different form by John Milnor
in the beautiful book “Singular points of complex hypersurfaces” (1968), under the
assumption that 0 is an isolated critical point of f . The construction was then
generalized by Lê Dũng Trán in the form that we will present.

The basic idea behind the Milnor fibration is that we try to understand the
topology of V (f) around 0 by looking at the smooth fibers f−1(b) for values of b
close to 0 in C, and how these fibers are transformed when we let b turn around
the origin. Let D be a small open disk of radius η > 0 around 0 in C, and let B be
a small open ball of radius ε > 0 around 0 in Cn. We write D∗ for the punctured
disk D = D \ {0}. Then f−1(D) is a small tube around V (f) in Cn, and f−1(D∗)
is the punctured tube obtained by removing V (f). All the fibers of f in f−1(D∗)
are smooth when η is sufficiently small. We then zoom in around the origin in Cn

by intersecting with the open ball B (we made pictures in class).

Theorem 1.3.1 (Milnor, Lê). When ε is sufficiently small, and η is sufficiently
small with respect to ε, then the map

f : B ∩ f−1(D∗) → D∗

is a locally trivial fibration (topologically, or even in the C∞-category if you know
what that means). It is called the Milnor fibration of f at 0.

Recall that, when X, S and F are topological spaces, a continuous map h : X →
S is called a locally trivial fibration with fiber F if we can cover S by opens U such
that there exists a homeomorphism h−1(U) → U × F that makes the triangle

h−1(U) U × F

U
h

∼

projection

commute. This implies in particular that every fiber of h is homeomorphic with F
(in a non-canonical way).

In class we did the example of the projection of a Möbius strip onto a circle.
Over any small arc of the circle, the Möbius strip just looks like the product of
the arc with a closed interval (the fiber). Something interesting happens when we
move around the circle: the fiber gets tilted upside-down (due to the twist in the
construction of the Möbius strip). A similar phenomenon occurs for every locally
trivial fibration X → S: for any open U as in the definition, we can use the chosen
homeomorphism with U×F to move from fiber to fiber by moving the U -coordinate
and fixing the F -coordinate. For any loop in S based at some point s0, we can cover
the loop by finitely many U and compose the parallel translations of the fibers to get
a homeomorphism from h−1(s0) to itself. It depends on the choices of the various
U and the homeomorphisms with U × F , but one can show that it is independent
of these choices up to isotopy (continuous deformations of homeomorphisms), and
that it also only depends on the homotopy class of the loop. Thus, we get an action
of the fundamental group π1(S, s0) by homeomorphisms on h−1(s0), up to isotopy.
This is called the monodromy action. The important ingredients of the fibration
X → S are the geometry of the fiber F and the monodromy action.

These constructions apply in particular to the Milnor fibration. If 0 is not a
critical point of f , then we can reduce to the case where f = x1 by means of a
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holomorphic coordinate change on Cn around 0. Now it is straightforward to check
that the Milnor fibration extends to a trivial fibration B ∩ f−1(D) → D: we can
find a homeomorphism B ∩ f−1(D) → D × B′ where B′ is an open ball in Cn−1

and such that the homeomorphism commutes with f on the source and with the
projection to D on the target. It follows that the fibers of the Milnor fibration are
contractible, and that the monodromy acts as the identity. This means that, in the
general case, any non-trivial topology in the fibers and any non-trivial monodromy
are symptoms of a singularity of f at 0. One can then use the exact form of these
symptoms to classify the singularities of polynomial maps f .

Example 1.3.2. If f has an isolated singularity at 0, then Milnor proved that the
fibers of the Milnor fibration are homotopy equivalent to a wedge sum of µ spheres
of dimension n−1 (that is, µ spheres of dimension n−1 joined together in a point).
The number µ is called the Milnor number of the singularity and can be computed
purely in algebraic terms: it is the dimension of the complex vector space

C[[x1, . . . , xn]]/(∂x1
f, . . . , ∂xn

f).

This is one of the most important invariants of isolated hypersurface singularities.

A more detailed discussion of the Milnor fibration (especially in the case n = 2)
can be found in chapter 6 of “Singular points of plane curves” by C.T.C. Wall. The
book by Milnor also remains an excellent reference.

In order to explain the link with semialgebraic geometry, we need one final
topological construction. We can build a model of the fiber of the Milnor fibration

f : B ∩ f−1(D∗) → D∗

that does not require us to choose a specific point in D∗, resulting in a more
canonical construction. This is done by performing a base change to the universal

covering space D̃∗ → D∗, where

D̃∗ = {w ∈ C | ℜ(w) < log η}

and the map D̃∗ → D∗ is given by exponentiation (we made pictures in class). We
can read off the fundamental group π1(D∗) = Z of D∗ from the universal cover by

considering the group of covering transformations, homeomorphisms from D̃∗ to
itself that commute with the map to D∗. These are precisely the maps of the form
w 7→ w + 2mπi with m ∈ Z. Considering a straight path from w to w + 2πi and
applying the exponential function, we obtain a loop in D∗ starting from exp(w)
that circles around the origin once, counterclockwise.

Base changing the Milnor fibration to D̃∗, we get a locally trivial fibration

(B ∩ f−1(D∗) ×D∗ D̃∗ → D̃∗

with the same fibers as the Milnor fibration. The upshot is that the new base D̃∗ is
contractible, which implies that the fibration is globally trivial (an actual product)

and the total space (B ∩ f−1(D∗) ×D∗ D̃∗ is homotopy equivalent to each of the
fibers. We call this space the (universal) Milnor fiber of f at 0. The fundamental

group π1(D∗) acts on the Milnor fiber via the covering transformations on D̃∗, and
this recovers the monodromy action.

In class, we did the example of the Möbius strip projecting to a circle. The
universal covering space of the circle is the real line; the covering map is

R → S1, x 7→ exp(2πix).
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The covering transformations on R are the translations by integers. Base changing
the Möbius strip to this covering space, we get an infinitely long rectangular strip.
The translation by 1 on the line acts on this strip by translating it by 1 and switching
it upside-down.

2. Lecture 2 (20 October)

2.1. The Milnor fibration: semialgebraic geometry. The construction of the
topological Milnor fibration cannot be translated into algebraic geometry in a direct
way1, because we used the metric on C to construct the disk D and the ball B.
However, we can carry out an analogous construction in semialgebraic geometry,
which also provides some geometric intuition about the Puiseux series field K.

A fundamental dogma of algebraic geometry is that the geometry of a space is
determined by the algebraic properties of the ring of functions on the space; this
is the bridge between geometry and algebra. We can think of k[[t]] as the ring of
power series that converge on an infinitesimally small disk D around 0 in C; the
incarnation of that disk in algebraic geometry is then the spectrum Spec k[[t]]. Of
course, the underlying topological space of Spec k[[t]] is very different from a disk:
it consists of a unique closed point (t) and a unique open point (0). Still, it is
justified to think of this space equipped with the structure sheaf OSpec k[[t]] as the
correct analog of D in algebraic geometry. Removing the origin t = 0 of the disk
corresponds to inverting the element t in the ring of functions; thus the punctured
disk D∗ corresponds to Spec k((t)).

One of the most profound, and most beautiful, insights of algebraic geometry is
the surprising connection between number theory and topology, as manifested in
the theory of algebraic fundamental groups: these simultaneously generalize Galois
groups of fields in number theory and fundamental groups of topological spaces. An
even deeper development of these ideas is the theory of étale cohomology, which
was one of Grothendieck’s main motivations to develop scheme theory and led to
a proof of the famous Weil conjectures on algebraic varieties over finite fields. We
will now see these ideas at work in a very special case.

The finite topological covers of a punctured disk D∗ are all of the form

D∗ → D∗, z 7→ zd

(to be precise, we should replace the radius of the disk by its d-th root in the source
to get a well-defined map, but we ignore this issue because we think of the radius
as being infinitesimally small). In our algebraic analog, this becomes the morphism

Spec k((
d
√
t)) → Spec k((t)).

Letting d grow and passing to the limit, we get the morphism

SpecK → Spec k((t))

as an algebraic approximation of the universal covering space D̃∗ → D∗. On the

algebraic side, the role of the group of covering transformations of D̃∗ (i.e., the
fundamental group of D∗) is played by the Galois group Gal(K/k((t))). If k = C,

1One can perform a similar construction using the étale topology, but the result is less geometric
than the semialgebraic approach.
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then a loop in D∗ going around the origin once counterclockwise corresponds to
the Galois automorphism of K given by

∞∑
j=N

ajt
j/d 7→

∞∑
j=N

ajξ
j
dt

j/d

with ξd = exp(2πi/d). This automorphism is a topological generator for the
profinite group Gal(K/k((t))). If you have not seen Galois groups of infinite
algebraic extensions before: they carry a natural topology, and “topological
generator” means that the set of integer powers of the element is dense in the
whole Galois group.

With this dictionary in place, we can build the semialgebraic version of the
Milnor fibration. Let f be a non-constant polynomial in k[x1, . . . , xn] with f(0) = 0.
Then f defines a morphism

f : An
k → A1

k = Spec k[t].

The analog of the Milnor tube f−1(D) is the base change

Y = An
k ×k[t] k[[t]]

which is a separated k[[t]]-scheme of finite type. More explicitly,

Y = Spec k[[t]][x1, . . . , xn]/(f − t)

(prove this as an exercise on fibered products if it is not immediately obvious).
We find the hypersurface V (f) = f−1(0) in Y by setting t = 0:

V (f) = Y ×k[[t]] k = Spec k[x1, . . . , xn]/(f).

Removing V (f) amounts to inverting t: the punctured tube f−1(D∗) becomes the
separated k((t))-scheme of finite type

Y ×k[[t]] k((t)) = Spec k((t))[x1, . . . , xn]/(f − t).

This is the fiber of Y over the generic point of Spec k[[t]]. Passing to the universal

covering space D̃∗ amounts to a further base change to K: the topological space

f−1(D∗) ×D∗ D̃∗ corresponds to

Y ×k[[t]] K

and the monodromy action becomes the Galois action of Gal(K/k((t))).
So far, we have not had any need for semialgebraic geometry: the space

Y = Y ×k[[t]] K

is a separated K-scheme of finite type, which we can write more explicitly as

Y = SpecK[x1, . . . , xn]/(f − t).

But we still need to find the analog of the Milnor ball B to zoom in around 0 ∈ V (f).
So let us think a bit further about how we can visualize closed points on Y . Since K
is an increasing union of field extensions k((t1/d)), each closed point a in Y has affine
coordinates in k((t1/d)) for some d > 0. As we have seen, we should think of the
spectrum of this field as a punctured disk D∗ that lies as a degree d topological cover
over D∗ ≈ Spec k((t)) inside the Milnor tube Y ≈ f−1(D). Now we want to express
that this punctured disk lies “close” to the point 0 in V (f). Topologically, we can
impose this by requiring that the punctured disk can be extended to a disk D whose
origin lies at 0 ∈ V (f). Algebraically, this means that, if we send the parameter d

√
t
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to 0 in the coordinates of our point a, then we find the origin 0 ∈ V (f). This means
precisely that only positive powers of t occur in the coordinates of a; equivalently,
that each coordinate has positive valuation. In this way, we finally arrive at the
definition of the semialgebraic Milnor fiber.

Definition 2.1.1. The semialgebraic Milnor fiber of f at 0 is the semialgebraic set

MFsa
f,0 = {a ∈ Kn | f(a) = t, v(ai) > 0 for all i}.

The monodromy action on the semialgebraic Milnor fiber is the action of the Galois
group Gal(K/k((t))) on MFsa

f,0.

Note that the Galois group indeed acts on this set, because the equation f(x) = t
has coefficients in k((t)) (so that any Galois conjugate of a solution a is again a
solution) and the Galois action on K preserves the valuation v.

At this point, our definition of the semialgebraic Milnor fiber merely arose by
analogy. In future lectures we will define various invariants of semialgebraic sets.
One can then show that the values of these invariants on the semialgebraic Milnor
fiber agree with the those of the topological Milnor fiber. A basic example of such
an invariant is the Euler characteristic.

2.2. The tropicalization map. Let us now explore another source of
semialgebraic sets. For every positive integer n, the n-dimensional tropicalization
map takes coordinatewise valuations of elements in (K∗)n:

trop: (K∗)n → Qn, a 7→ (v(a1), . . . , v(an)).

The aim of tropical geometry2 is to study the geometry of algebraic varieties X in
(K∗)n by analyzing the shape of trop(X). The Bieri-Groves theorem states that
trop(X) is a finite union of polytopes in Qn.

Definition 2.2.1. A polytope in Qn is a finite intersection of closed half-spaces of
the form

H = {w ∈ Qn | ℓ(w) ≥ c}
where ℓ : Qn → Q is a Q-linear map and c is a rational number.

Note that we do not require polytopes to be bounded: for instance, Qn is itself
a polytope. The bounded polytopes in Qn are precisely the convex hulls of finite
sets of points in Qn.

Proposition 2.2.2. For every polytope P in Qn, the inverse image trop−1(P ) is
a semialgebraic subset of Kn.

Proof. Since intersections commute with taking inverse images, it suffices to
consider the case where P is a half-space H as in Definition 2.2.1. Rescaling the
inequality ℓ(w) ≥ c, we may assume that the linear form ℓ has integer coefficients:

ℓ(w) = b1w1 + . . . + bnwn

with b1, . . . , bn ∈ Z. Permuting the coordinates on Kn and Qn, we may further
assume that there exists an element m in {1, . . . , n} such that b1, . . . , bm are non-
negative and bm+1, . . . , bn are negative. Then we can rewrite the equation for H
as

b1w1 + . . . + bmwm ≥ c− bm+1wm+1 − . . .− bnwn.

2The name “tropical geometry” was given to honour one of the pioneers of this field, the
Brazilian computer scientist Imre Simon.
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Since the valuation v takes products to sums, we now have

trop−1(H) = {a ∈ Kn | ai ̸= 0 for all i, and v(ab11 · · · abmm ) ≥ v(tca
−bm+1

m+1 · · · a−bn
n )}.

The two arguments of v that appear in this description are polynomials in the
coordinates of a with coefficients in K, so that trop−1(H) is semialgebraic. □

Example 2.2.3. The following sets are semialgebraic in K:

trop−1(0) = {a ∈ K∗ | v(a) = 0} = R∗,

trop−1([0, 1]) = {a ∈ K∗ | 0 ≤ v(a) ≤ 1},
trop−1(Q≥0) = {a ∈ K∗ | v(a) ≥ 0} = R.

Remarks 2.2.4.
(1) The proposition immediately implies that, if Γ is a finite Boolean

combination of polytopes in Qn, then trop−1(Γ) is a semialgebraic subset
of Kn (Boolean combinations commute with taking inverse images).

(2) It is not hard to show that, for every constructible subset X of Kn

that has infinite intersection with (K∗)n, the image trop(X ∩ (K∗)n) is
unbounded. This is similar to the property that algebraic subvarieties of
Cn of positive dimension are never compact. It follows that, for every non-
empty bounded polytope P , the inverse image trop−1(P ) is semialgebraic
but not constructible in Kn.

2.3. Semialgebraic sets in K-varieties. In algebraic geometry, we can pass from
affine varieties to more general varieties and schemes by a gluing construction.
Similarly, we can globalize the definition of semialgebraic sets in Kn to subsets in
algebraic K-varieties. Recall that, for every K-scheme X of finite type, the set
X(K) is defined as the set of morphism of K-schemes SpecK → X, and we can
identify X(K) with the set of closed points of X.

Definition 2.3.1. Let X be a K-scheme of finite type. A subset S of X(K)
is called semialgebraic if we can cover X by affine open subschemes U such that
S ∩ U(K) is a finite Boolean combination of sets of the form

{a ∈ U(K) | v(f(a)) ≥ v(g(a))}
with f, g ∈ OX(U). Equivalently, for every closed embedding U → An

K , the image
of S ∩ U(K) in An

K(K) = Kn is semialgebraic in the sense of Definition 1.2.1.

Note that any finite Boolean combination of semialgebraic subsets in X(K) is
again semialgebraic. The following exercise shows that the definition does not
depend on the choice of the opens U .

Exercise 2.3.2. Let S be a semialgebraic set in X(K). Show that, for every open
U in X and every locally closed embedding U → An

K , the image of S ∩U(K) in Kn

is semialgebraic.

Example 2.3.3. Let X be a K-scheme of finite type. A constructible subset of
X(K) is a finite Boolean combination of Zariski-closed subsets of X(K). Every
constructible subset is semialgebraic; this follows at once from the affine case in
Example 1.2.3.

Exercise 2.3.4. Let X be a K-scheme of finite type, and let U be a (locally
closed) subscheme of X. Show that every semialgebraic subset of U(K) is also
semialgebraic in X(K).
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A powerful method to construct semialgebraic sets (most of which will not be
constructible) is the specialization map that will be introduced in the following
lecture.

3. Lecture 3 (24 October)

3.1. Schemes over the valuation ring. This section collects some reminders
about schemes over the valuation ring R in the field of Puiseux series. The
underlying topological space of the spectrum SpecR consists of the closed point m
and the generic point (0). The residue fields at m and (0) are k and K, respectively,
so that we can think of SpecR as the points Spec k and SpecK glued together.

More generally, every R-scheme X consists of a generic fiber X ×R K, which is
a scheme over K, and a special fiber X ×R k, which is a scheme over k. These are
glued together inside X : the generic fiber is open in X , whereas the special fiber
is closed in X . We made a schematic picture in class.

Example 3.1.1. If

X = SpecR[x1, . . . , xn]/(f1, . . . , fℓ),

then the generic fiber is the affine K-scheme

X ×R K = SpecK[x1, . . . , xn]/(f1, . . . , fℓ)

and the special fiber is the affine k-scheme

X ×R k = Spec k[x1, . . . , xn]/(f1, . . . , f ℓ)

where we write f j for the polynomial obtained from fj by reducing the coefficients
modulo m.

For every R-algebra A, the set X (A) is by definition the set of morphisms of
R-schemes SpecA → X . By the universal property of the fibered product, we have
X (A) = (X ×R A)(A). This applies in particular to A = K and A = k, so that
we can identify X (K) with the set of closed points on the generic fiber, and X (k)
with the set of closed points on the special fiber.

The inclusion R → K induces a morphism SpecK → SpecR and therefore a
map X (R) → X (K) by composition. Similarly, the projection morphism R →
k = R/m gives rise to a map

spX : X (R) → X (k)

called the specialization map.

Example 3.1.2. If

X = SpecR[x1, . . . , xn]/(f1, . . . , fℓ),

then

X (K) = {a ∈ Kn | fj(a) = 0 for all j}
X (R) = {a ∈ Rn | fj(a) = 0 for all j}
X (k) = {a ∈ kn | f j(a) = 0 for all j}

where f j again denotes the reduction of fj modulo m. The map X (R) → X (K) is
the obvious inclusion, and the map spX : X (R) → X (k) reduces the coordinates
of a modulo m.
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It follows directly from the definition that the specialization map is functorial
in X : every morphism of R-schemes X → Y induces maps X (R) → Y (R) and
X (k) → Y (k), and these commute with specialization.

Exercise 3.1.3. Let X be a R-scheme of finite type. Show that a point a ∈ X (K)
extends to a point in X (R) (in other words, lies in the image of X (R) → X (K))
if and only if there exists an affine open neighbourhood

U = SpecR[x1, . . . , xn]/I

of a in X such that xi(a) ∈ R for i = 1, . . . , n.

Exercise 3.1.4. Prove a topological version of the criterion in Exercise 3.1.3: a
point a in X (K) extends to a point in X (R) if and only if the Zariski closure of a
in X intersects the special fiber X ×R k. Moreover, the set of intersection points
corresponds bijectively to the set of extensions of a to X (R).

If X is separated, then each point in X (K) has at most one extension to X (R),
so that the map X (R) → X (K) is injective. This is a special case of the valuative
criterion of separatedness. In this case, we can view X (R) as a subset of X (K).
For an example where X (R) → X (K) is not injective, take two copies of SpecR
and glue them along the generic points to get “SpecR with two origins”. This
scheme has only one K-point but two R-points.

The map X (R) → X (K) is bijective if and only if X is proper over R. The
“if” part follows from the valuative criterion for properness. The “only if” part is
more difficult to prove; let us just look at an elementary example.

Example 3.1.5. Let X = ProjR[x0, x1], the projective line over R. This is a
proper R-scheme with generic fiber P1

K and special fiber P1
k. A K-point on X is

the same thing as a couple of homogeneous coordinates in K (up to scaling by a
factor in K∗) and a R-point on X is the same thing as a couple of homogeneous
coordinates in R which do not both lie in m (up to scaling by a factor in R∗)3.
This immediately implies that X (R) → X (K) is bijective: multiplying a couple
of homogeneous coordinates in K by a suitable fractional power of t, we can rewrite
it as [a0, a1] with a0 and a1 in R and at least one of them a unit; this expression
is unique up to a scalar in R∗. The image of [a0, a1] under the specialization map

spX is the point on P1
k with homogeneous coordinates [a0, a1], where (·) denotes

reduction modulo m.
Let Y be the R-scheme that we obtain from X by removing the origin [0, 1] from

the special fiber P1
k. The scheme Y is no longer proper over R and Y (R) → Y (K) is

no longer bijective: we have Y (K) = X (K) (since we have not altered the generic
fiber) but in Y (R) we are missing all the points a from X (R) with spX (a) = [0, 1]
(equivalently, all the points [a0, a1] with v(a0) > v(a1)).

For every proper K-scheme X, there exists a proper R-scheme X whose generic
fiber X ×R K is isomorphic to X. This is easy to show when X is projective: fix
a closed embedding X → Pn

K and take for X the schematic closure of X in Pn
R.

The proof of the general case is much more subtle; it is a special case of Nagata’s
compactification theorem.

3The case of R-points is not entirely trivial and relies on the fact that R is a local ring.



12 JOHANNES NICAISE

3.2. The specialization map. Now, we will see how we can use the specialization
map on R-schemes to produce further examples of semialgebraic sets.

Proposition 3.2.1. Let X be a R-scheme of finite type, and let C be a
constructible subset of X (k). Then the image of sp−1

X (C) under the map X (R) →
X (K) is a semialgebraic subset of X (K).

Proof. If U1, . . . ,Ur are open subschemes that cover X , then it is easy to see that

sp−1
X (C) = sp−1

U1
(C ∩ U1(k)) ∪ . . . ∪ sp−1

Ur
(C ∩ Ur(k)).

Prove this as an exercise: the key point is showing that every R-point SpecR → X
factors through at least one of the opens Ui. It follows from Exercise 2.3.4 that
every semialgebraic subset in one of the opens Ui(K) is also semialgebraic in X (K).
Since a finite union of semialgebraic sets is again semialgebraic, it suffices to prove
the result for the opens Ui, which reduces the problem to the case where X is
affine. We write

X = SpecR[x1, . . . , xn]/I

for some ideal I. Taking inverse images commutes with Boolean operations, so that
we can further reduce to the case where C is of the form

C = {b ∈ X (k) | g(b) = 0}

for some polynomial g in k[x1, . . . , xn].
Let g̃ be any polynomial in R[x1, . . . , xn] whose reduction modulo m is equal to g.

Then for every element a in Rn, we have that g(a) = 0 if and only if g̃(a) ∈ m, where

(·) denotes reduction of coordinates modulo m. This condition is also equivalent to
v(g̃(a)) > 0. Therefore, we can write

sp−1
X (C) = {a ∈ X (K) | v(xi(a)) ≥ 0 for i = 1, . . . , n, and v(g̃(a)) > 0}

which is a semialgebraic set in X (K). □

Example 3.2.2. Let X be a separated k-scheme of finite type, equipped with a
morphism

f : X → A1
k = Spec k[t].

Set X = X ×k[t] R; this can also be viewed as the closed subscheme of X ×k R
defined by the equation f = t. Then X (K) = {a ∈ X(K) | f(a) = t} and X (k) =
{a ∈ X(k) | f(a) = 0}. Thus X (k) captures the geometry of the zero locus of f in
X, and X (K) captures the geometry of the fibers of f that lie very close to the
fiber over 0. Inside X (K) we can consider the semialgebraic subset

X (R) = {a ∈ X(R) | f(a) = t}

and, for every point x in X (k), we can consider the smaller semialgebraic subset
sp−1

X (x) consisting of the points a in X (R) that map to x under the reduction of

the coordinates modulo m. We call sp−1
X (x) the semialgebraic Milnor fiber of f at

x; in the case where X = An
k and x is the origin, this is the same construction as

in Definition 2.1.1.
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3.3. Semialgebraic maps and quantifier elimination. In order to define a
category of geometric objects, we need to specify not only the objects themselves
but also the maps between them. This will tell us, in particular, which objects we
consider to be isomorphic. Geometry then becomes the study of properties that
are invariant under isomorphism, and the main goal is classifying objects up to
isomorphism.

Definition 3.3.1. Let X and Y be K-schemes of finite type. Let S and T be
semialgebraic subsets of X(K) and Y (K), respectively. A map f : S → T is called
semialgebraic if its graph is a semialgebraic subset of X(K)×Y (K) = (X×KY )(K).

Exercise 3.3.2. Let X be a K-scheme of finite type and let S be a semialgebraic
subset of X(K). Show that the inclusion map S → X(K) is semialgebraic.

Exercise 3.3.3. Let X and Y be K-schemes of finite type. Let S and T be
semialgebraic subsets of X(K) and Y (K), respectively. Show that, for every
morphism of K-schemes f : X → Y such that f(S) ⊂ T , the map f |S : S → T
is semialgebraic.

It is straightforward to check that a composition of semialgebraic maps is again
semialgebraic. When f : S → T is a semialgebraic bijection, then its inverse
f−1 : T → S is again semialgebraic, because the graph of f−1 is simply the transpose
of the graph of f . Thus the isomorphisms in the category of semialgebraic sets are
the semialgebraic bijections.

The following theorem is one of the cornerstones of semialgebraic geometry over
K.

Theorem 3.3.4. The image of a semialgebraic set under a semialgebraic map is
again semialgebraic.

This is a special case of the theorem of quantifier elimination for algebraically
closed valued fields proved by A. Robinson (1956). To see what this statement has
to do with quantifiers, consider the case of a semialgebraic map f : Km → Kn. For
every point a in Km, the image f(a) is the unique point b in Kn satisfying some
semialgebraic expression

φ(a1, . . . , am, b1, . . . , bn)

in the coordinates of a and b (namely, the expression defining the graph of f). The
image of f is then the set of points b in Kn satisfying the formula

(∃a1) . . . (∃am)(φ(a1, . . . , am, b1, . . . , bn)

involving existential quantifiers. Quantifiers were not allowed in our definition of
a semialgebraic set, so we must show that there exists an equivalent description
of the image in terms of a semialgebraic formula without quantifiers. This is the
process of eliminating quantifiers.

Example 3.3.5. Chevalley’s theorem in algebraic geometry states that the image
of a constructible set under a morphism of algebraic varieties over an algebraically
closed field is again constructible4; this is equivalent to quantifier elimination for
algebraically closed fields, which was proved by Tarski (1948).

4There is a much more general versions of this theorem for morphisms of finite presentation
between schemes.
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Another famous example is Tarski’s theorem on quantifier elimination for the
ordered field (R,≤). The field R itself does not have quantifier elimination, because
the image of the polynomial map

f : R → R, x 7→ x2

is not constructible. Tarski proved that this problem disappears by adding the
ordering ≤ to the structure of R: we can define semialgebraic sets in Rn as finite
Boolean combinations of sets of the form

{a ∈ Rn | g(a) ≥ 0}
with g a polynomial in R[x1, . . . , xn]. Semialgebraic maps are then defined
accordingly. Tarski’s theorem states that the image of a semialgebraic set under a
semialgebraic map is again semialgebraic. The proof gives an algorithm to eliminate
quantifiers from semialgebraic formulas. In the example of our map f above, the
expression (∃a)(a2 = b) describing the image of f gets replaced by the quantifier-
free expression b ≥ 0.

Exercise 3.3.6. Let X and Y be K-schemes of finite type.

(1) Let f : X → Y be a morphism of K-schemes. Show that, for every
semialgebraic subset T of Y (K), the inverse image f−1(T ) is semialgebraic
in X(K), without using Theorem 3.3.4.

(2) Let S be a semialgebraic subset of X(K), and let f : S → Y (K) be a
semialgebraic map. Show that, for every semialgebraic subset T of Y (K),
the inverse image f−1(T ) is semialgebraic in X(K). Here you will need
Theorem 3.3.4.

4. Lecture 4 (27 October)

4.1. There are many (but not too many) semialgebraic isomorphisms. Let
X and Y be K-schemes of finite type. We have seen in Exercise 3.3.3 that, for every
morphism X → Y of K-schemes of finite type, the induced map X(K) → Y (K) is
semialgebraic. In particular, if X and Y are isomorphic as K-schemes, then X(K)
and Y (K) are isomorphic as semialgebraic sets. However, there are many examples
where X and Y are not isomorphic as K-schemes but X(K) and Y (K) are still
isomorphic as semialgebraic sets: working in the semialgebraic category gives us
much more leeway to construct isomorphisms.

Example 4.1.1. Let X be a K-scheme of finite type, let S be a semialgebraic set
in X(K), and let {S1, . . . , Sr} be a partition of S into semialgebraic subsets. Then
S is isomorphic to the disjoint union S1 ⊔ . . .⊔Sr (viewed as a semialgebraic set in
the disjoint union of r copies of X(K)). Indeed, the projection to X(K) defines a
semialgebraic bijection from S1 ⊔ . . . ⊔ Sr to S.

In particular, the semialgebraic set K = A1
K(K) is isomorphic to K∗ ⊔{0}, even

though the K-scheme A1
K is not isomorphic to the disjoint union of A1

K \ {0} and
{0}.

This illustrates that semialgebraic geometry is piecewise geometry, since we
can break any semialgebraic set into finitely many semialgebraic pieces without
changing its geometry. There are more sophisticated approaches to semialgebraic
geometry (based on non-archimedean geometry) that prevent this issue. For us, it
is a feature rather than a bug, because the piecewise nature will make it possible to
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arrive at a complete classification of semialgebraic sets, while it preserves enough
interesting structure for applications.

The following proposition produces a more profound class of examples of non-
isomorphic K-varieties that become isomorphic as semialgebraic sets.

Proposition 4.1.2. Let X and Y be smooth and proper R-schemes, and assume
that the special fibers X ×R k and Y ×R k are isomorphic (as k-schemes). Then
X (K) and Y (K) are isomorphic as semialgebraic sets.

We will prove this proposition in Section 5.1; this requires a preliminary
discussion on étale morphisms and henselian local rings. We can already look
at an interesting example.

Example 4.1.3. To any elliptic curve E over a field F , one can attach its j-
invariant j(E) ∈ F . If F is algebraically closed, then two elliptic curves are
isomorphic if and only if they have the same j-invariant, and every value in F
is the j-invariant of a unique isomorphism class of elliptic curves. See for instance
Silverman’s book “The arithmetic of elliptic curves” (1986).

Let E and E′ be elliptic curves over K such that j(E) and j(E′) lie in R and are
congruent modulo m. Then one can show that E extends to a smooth and proper
R-scheme E such that E ×R K ∼= E and such that E ×R k is an elliptic curve over
k with j-invariant j(E), the reduction of j(E) modulo m. Similarly, E′ extends to
a smooth and proper R-scheme E ′ with the analogous properties. Since j(E) and
j(E′) are congruent modulo m, they have the same reduction in k, so that E ×R k
and E ′ ×R k are isomorphic. Proposition 4.1.2 now implies that E(K) and E′(K)
are isomorphic as semialgebraic sets. However, E and E′ are not isomorphic as
K-schemes unless j(E) = j(E′).

4.2. Étale morphisms. Consider the map

f : C∗ → C∗, z 7→ z2.

This map is locally biholomorphic: we can cover the source by opens U (in
the Euclidean topology) such that f(U) is open in C∗ and f : U → f(U) is
a holomorphic bijection with holomorphic inverse. However, this is not a local
isomorphism of complex algebraic varieties (with respect to the Zariski topology),
because it is not birational. The issue is that the Zariski topology is much coarser
than the Euclidean topology. On the other hand, we can still express the property
of being locally biholomorphic in a purely algebraic way: by the inverse function
theorem, this is equivalent to saying that the derivative is everywhere invertible.
Pushing this idea further leads to the definition of an étale morphism.

Definition 4.2.1. A morphism of schemes f : X → Y is called étale if it is flat and
unramified.

Unramified means that f is locally of finite presentation and that, for every point
y on Y , the fiber X×Y y is a disjoint union of spectra of finite separable extensions
of the residue field κ(y). The flatness assumption then expresses that these fibers
vary in a continuous way as y moves over Y ; for instance, it rules out immersions
that are not open. For the purpose of this course, the main things you need to
know about étale morphisms are summarized in the following list.

(1) Let X and Y be smooth schemes over an algebraically closed field F . Then
a morphism of F -schemes f : X → Y is étale if and only if, for every point
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x in X(F ), the induced map on Zariski tangents spaces TxX → Tf(x)Y
is an isomorphism. If F = C, this is also equivalent to the property that
f : X(C) → Y (C) is locally biholomorphic.

(2) If F ⊂ F ′ is an extension of fields, then SpecF ′ → SpecF is étale if and
only if F ′ is a finite separable extension of F .

(3) Every open immersion of schemes is étale. If f : X → Y is an étale
morphism of schemes, then f(X) is open in Y .

(4) A composition of étale morphisms is étale, and any base change of an étale
morphism is étale.

(5) A standard étale morphism is a morphism of the form

Spec
A[T ][1/g(T )]

(h(T ))
→ SpecA

where g(T ) and h(T ) are polynomials in A[T ], the polynomial h(T ) is monic,
and the derivative h′(T ) is invertible in the ring

A[T ][1/g(T )]

(h(T ))
.

As the name suggests, standard étale morphisms are étale (because we
forced the derivative h′(T ) to be invertible). Moreover, every étale
morphism is locally of this form: a morphism of schemes f : X → Y is
étale if and only if, for every point x in X, we can find an affine open
neighbourhood U of x in X and an affine open neighbourhood V of f(x)
in Y such that f(U) ⊂ V and such that the morphism f : U → V is a
standard étale morphism.

4.3. Henselian local rings. Let X and Y be smooth C-schemes of finite type and
let f : X → Y be an étale morphism. Then, as we have seen, the map X(C) → Y (C)
is locally biholomorphic. In particular, it is a local homeomorphism: we can cover
X(C) by opens U (in the Euclidean topology) such that f(U) is open in Y (C) and
such that f : U → f(U) is a homeomorphism. This implies that, for every point
x of X(C) and every sufficiently small open neighbourhood V of f(x) in Y (C),
there exists a unique open neighbourhood U of x in X(C) such that f maps U
homeomorphically onto V .

In algebraic geometry, the role of these “sufficiently small opens” is played by
spectra of henselian local rings. We will give two equivalent definitions of a henselian
local ring: the first is the direct translation of the above topological property, but
the second is easier to check in practice.

Proposition 4.3.1. Let A be a local ring with maximal ideal m and residue field
κ. Then the following properties are equivalent.

(1) For every étale morphism of schemes X → Y , every morphism SpecA → Y
and every morphism Specκ → X such that the square

Specκ X

SpecA Y

commutes, there exists a unique morphism SpecA → X such that both
triangles in the diagram
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Specκ X

SpecA Y

∃!

commute. Informally: we can uniquely lift a morphism SpecA → Y to X
as soon as we have chosen a lifting of Specκ → Y to X.

(2) For every monic polynomial f(T ) in A[T ] and every simple root a of f(T )

in κ, there exists a unique root b of f(T ) in A such that b = a. Here (·)
denotes reduction modulo m.

Proof. We first prove that (1) implies (2). Set Y = SpecA and

X = Spec
A[T ][1/f ′(T )]

f(T )
.

Then giving a simple root a of f(T ) in κ is the same thing as giving a morphism
of A-schemes Specκ → X. The lifting property in (1) implies that this morphism
extends uniquely to a morphism of A-schemes SpecA → X, that is, a root b of
f(T ) in A such that b = a:

Specκ X

SpecA Y

a

Id

∃!b

Observe that any root c of f(T ) in A with c = a satisfies f ′(c) = f ′(a) ̸= 0 so
that f ′(c) is invertible in A; therefore, c corresponds to a morphism of A-schemes
SpecA → X, and the uniqueness statement in (1) implies uniqueness in (2).

Now, we prove that (2) implies (1). Let X → Y be an étale morphism of schemes
that fits into a commutative square

Specκ X

SpecA Y

In order to lift the morphism SpecA → Y to X, we can reduce to the case where
SpecA → Y is the identity on SpecA by performing a base change, replacing X by
X ×Y SpecA. Since every étale morphism of schemes is locally of standard form,
we may further assume that the A-scheme X is given by

X = Spec
A[T ][1/g(T )]

(h(T ))

where g(T ) and h(T ) are polynomials in A[T ], the polynomial h(T ) is monic, and
the derivative h′(T ) is invertible in the ring

A[T ][1/g(T )]

(h(T ))
.

The given morphism Specκ → X then corresponds to a simple root a of h(T ) in
κ. Applying (2) to the polynomial h(T ), we find that there exists a unique root b
of h(T ) in A such that b = a. This root corresponds to a morphism

SpecA → SpecA[T ]/(h(T ))
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that factors through the open

X = Spec
A[T ][1/g(T )]

(h(T ))

because g(b) = g(a) ̸= 0 so that g(b) is invertible in A. □

Definition 4.3.2. We say that a local ring A is henselian if it satisfies the equivalent
properties in Proposition 4.3.1.

Example 4.3.3.
(1) For every prime p, the ring Zp of p-adic integers is henselian. For every

field κ, the formal power series ring κ[[t]] is henselian. One can prove that
these rings satisfy property (2) in Proposition 4.3.1 by means of the Newton
approximation method. Contrary that what happens over the real numbers,
here the sequence of approximate roots will always converge to a root.
More generally, one can use this argument to show that every complete
noetherian local ring is henselian (and even every complete and separated
local ring). This result is often called Hensel’s lemma, after Kurt Hensel,
who discovered the p-adic numbers.

(2) The ring R = ∪d>0k[[t1/d]] is henselian: for each polynomial f(T ) in R[T ],
all the coefficients of f will lie in k[[t1/d]] for some sufficiently divisible value
of d, so that Hensel’s lemma for the power series ring k[[t1/d]] also implies
that R satifies property (2) in Proposition 4.3.1.

(3) Consider the ring OC,0 of germs of holomorphic functions around the origin
of C (that is, the ring of formal power series in C[[t]] with positive radius
of convergence). It follows directly from the inverse function theorem that
this ring is henselian.

(4) The local ring OA1
C,0

= C[t](t) is not henselian: let f(T ) be the polynomial

T 2− (t+1) over C[t](t). The reduction of f modulo (t) has a simple root at
T = 1, but f has no roots in C[t](t), because t+ 1 has no square root in the
field of rational functions C(t). Observe that t + 1 does have a square root
in OC,0 and C[[t]] (given by the Taylor expansion of

√
t + 1 around t = 0).

5. Lecture 5 (31 October)

5.1. Proof of Proposition 4.1.2. The henselian property of R has the following
useful consequence.

Lemma 5.1.1. Let h : X → Y be an étale morphism of R-schemes. Then the
square

X (R) X (k)

Y (R) Y (k)

spX

h h

spY

is Cartesian. In other words, for every point b in Y (R) and every point a in
X (k) such that spY (b) = h(a), there exists a unique element a in X (R) satisfying
h(a) = b and spX (a) = a.

Proof. This is a special case of property (1) in Proposition 4.3.1, applied to the
henselian local ring A = R. □
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We are finally in position to prove Proposition 4.1.2; let us first recall the
statement.

Proposition (4.1.2). Let X and Y be smooth and proper R-schemes, and assume
that the special fibers X ×R k and Y ×R k are isomorphic (as k-schemes). Then
X (K) and Y (K) are isomorphic as semialgebraic sets.

Proof. We fix an isomorphism between X ×R k and Y ×R k, which we use to
identify these k-schemes in what follows. Let {U1, . . . , Ur} be a cover of X ×R k
by open subschemes. For every non-empty subset J of {1, . . . , r}, we write

CJ =
⋂
j∈J

Uj(k), Co
J = CJ \

⋃
j /∈J

Uj(k).

The sets Co
J are constructible and form a partition of X (k) = Y (k). Consequently,

the sets sp−1
X (Co

J) and sp−1
Y (Co

J) form a partition of X (R), resp. Y (R), into
semialgebraic pieces. Since X and Y are proper over R, we have X (R) = X (K)
and Y (R) = Y (K).

Suppose that, for each j in {1, . . . , r}, there exists an isomorphism of
semialgebraic sets

sp−1
X (Uj(k)) → sp−1

Y (Uj(k))

that commutes with the specialization maps spX and spY . Then this isomorphism
restricts to an isomorphism

sp−1
X (Co

J) → sp−1
Y (Co

J)

for every subset J of {1, . . . , r} that contains j. It follows that the semialgebraic sets
sp−1

X (Co
J) and sp−1

Y (Co
J) are isomorphic for each non-empty subset J of {1, . . . , r}.

Since these sets form a partition of X (K) and Y (K), respectively, we know by
Example 4.1.1 that X (K) is isomorphic to the disjoint union of the sets sp−1

X (Co
J),

and similarly for Y . Therefore, X (K) and Y (K) are isomorphic as semialgebraic
sets.

This means that it suffices to prove that around every point x of X ×R k =
Y ×R k, we can find an open subcheme U such that there exists an isomorphism
of semialgebraic sets

sp−1
X (U(k)) → sp−1

Y (U(k))

that commutes with the specialization maps spX and spY . Since X is smooth over
R, the special fiber X ×R k is smooth over k. The theory of smooth morphisms
tells us that a k-scheme Z is smooth if and only if it can be covered by opens U
that admit an étale morphism to an affine space An

k . Let U be such an open in
X ×R k that contains x, with an étale morphism

U → An
k = Spec k[T1, . . . , Tn].

Pulling back the coordinate functions T1, . . . , Tn, we get regular functions
f1, . . . , fn on U . Shrinking U around x, we may assume that there exist an open
subscheme U of X and an open subscheme V of Y such that U is the intersection
of U and V with he special fiber X ×R k = Y ×R k, and such that the functions fj
extend to regular functions gj and hj on U and V , respectively. These extensions
define morphisms U → An

R and V → An
R that restrict to U → An

k on the special
fibers.

The R-schemes U and V are flat over R because they are smooth. Now the fact
that the morphisms U → An

R and V → An
R are étale on the special fibers implies
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that they are also étale on some open neighbourhoods of the special fibers in U
and V (take this as a black box if you have not seen flatness before). Replacing
U and V by these open neighbourhoods, we have constructed étale morphisms
U → An

R and V → An
R with the same restriction to the special fiber U . Note that

U (R) = sp−1
X (U(k)) and V (R) = sp−1

Y (U(k)), so that it suffices to construct a
semialgebraic isomorphism U (R) → V (R) that commutes with the specialization
maps.

Consider the fibered product

W = U ×An
R

V .

All the morphisms in the diagram

W

U V

An
R

are étale, because being étale is preserved by base change. The special fiber of W
is

W ×R k = U ×k U

so that we can consider U as a subscheme of W ×R k via the diagonal embedding

∆: U → U ×k U.

It follows from Lemma 5.1.1 that the semialgebraic set

sp−1
W (U(k)) ⊂ U (R) × V (R)

is the graph of a bijection U (R) → V (R): every point b in U (R) lifts uniquely to
a point a in W (R) such that spU (b) = spW (a) in U(k), and the analogous property
holds for V . This semialgebraic bijection commutes with the specialization maps
on U and V . □

Exercise 5.1.2. Adapt the proof of Proposition 4.1.2 to prove the following more
general result: let X and Y be smooth separated R-schemes of finite type of the
same dimension. Let U be a subscheme of X ×R k and let V be a subscheme
of Y ×R k such that U and V are isomorphic as k-schemes. Then sp−1

X (U(k)) is

isomorphic to sp−1
Y (V (k)) as semialgebraic sets.

6. Lecture 6 (2 November)

In the previous lectures, we have seen how semialgebraic geometry of K is
connected to convex geometry over Q by means of the tropicalization map (t-adic
valuation), and to algebraic geometry over k by means of the specialization map
(reduction modulo m). We summarize these connections in the following diagram:
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Semialgebaic geometry/K

Convex geometry/Q Algebraic geometry/k

trop sp

trop−1 sp−1

Remarkably, semialgebraic geometry over K is controlled entirely by convex
geometry over Q and algebraic geometry over k, in the following sense:

(1) Any semialgebraic set over K can be built from pieces of the form trop−1(Γ)
and sp−1

X (C), where Γ is a definable set in Qn for some n ≥ 0, X is a smooth
separated R-scheme of finite type, and C is a constructible subset of X (k).

(2) The description of a semialgebraic set in terms of such pieces is not unique,
but we can control all the different descriptions of this type.

These statements lie at the core of Hrushovski and Kazhdan’s theory of motivic
integration, which aims to classify semialgebraic sets over K and construct
geometric invariants of such sets. To make them precise, we need to introduce
various Grothendieck rings.

6.1. The Grothendieck ring of semialgebraic sets. We denote by K0(VFK)
the abelian group defined by the following presentation:

• generators: isomorphism classes [S] of semialgebraic sets S over K;
• relations: for every semialgebraic set S and every semialgebraic subset T

of S, we have

[S] = [T ] + [S \ T ].

These relations are called scissor relations, because they allow us to cut a
semialgebraic set into semialgebraic pieces. Note that S is isomorphic to the
disjoint union of T and S \ T , by Example 4.1.1, so that we would obtain the
same group by replacing the scissor relations by the relations [S ⊔ S′] = [S] + [S′]
for all semialgebraic sets S and S′. The scissor relations imply that [∅] = [∅] + [∅]
so that [∅] = 0 in K0(VFK).

If X and X ′ are K-schemes of finite type, and S and S′ are semialgebraic
subsets of X(K) and X ′(K), respectively, then it is easy to show that S × S′

is a semialgebraic subset of X(K) × X ′(K) = (X ×K X ′)(K). There exists a
unique ring structure on K0(VFK) with the property that [S] · [S′] = [S × S′]
for all semialgebraic sets S and S′. The identity element for the multiplication
is the isomorphism class of a point. We call K0(VFK) the Grothendieck ring of
semialgebraic sets over K.

6.2. The Grothendieck ring of definable sets over Q.

Definition 6.2.1. A subset of Qn is called definable if we can write it as a finite
Boolean combination of polytopes in Qn (in the sense of Definition 2.2.1). Two
definable subsets Γ and Γ′ of Qn are called isomorphic if there exists a unimodular
affine transformation

ϕ : Qn → Qn, w 7→ Aw + b

with A ∈ GLn(Z) and b ∈ Qn such that Γ′ = ϕ(Γ).
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Here unimodular refers to the fact that we force the matrix A and its inverse to
have coefficients in Z. For instance, a homothety with scaling factor different from
±1 is not unimodular. Note that we do not consider isomorphisms between definable
sets in Qm and Qn for m ̸= n; in particular, a point in Qm is not isomorphic to a
point in Qn unless m = n.

For every n ≥ 0, we denote by K0(Q[n]) the abelian group defined by the
following presentation:

• generators: isomorphism classes [Γ] of definable subsets Γ in Qn;
• relations: if Γ′ ⊂ Γ are definable subsets in Qn, then

[Γ] = [Γ′] + [Γ \ Γ′].

The scissor relations again imply that [∅] = 0 in K0(Q[n]). We also consider the
graded abelian group

Kdim
0 (Q) =

⊕
n≥0

K0(Q[n]).

If Γ is a definable subset of Qn and we want to make the grading explicit, we write
[Γ]n for the class of Γ in Kdim

0 (Q).
If Γ is a definable subset of Qm and Γ′ is a definable subset of Qn, then it is easy

to see that Γ×Γ′ is a definable subset of Qm+n. There exists a unique graded ring
structure on Kdim

0 (Q) such that

[Γ]m · [Γ′]n = [Γ × Γ′]m+n

for all such Γ and Γ′. The identity element for the ring multiplication is [pt]0, the
class of the point in Q0.

The fact that we can not only add in Kdim
0 (Q), but also subtract, leads to some

unexpected identities between classes of non-isomorphic definable sets.

Example 6.2.2. For all a, b ∈ Q, the definable subsets Q≥a = [a,+∞) and Q≥b =
[b,+∞) are isomorphic via translation. It follows from the scissor relations that,
when a ≤ b, we have

[Q≥a] = [ [a, b) ] + [Q≥b]

in K0(Q[1]), so that the class of [a, b) is equal to zero.
This also implies that

[ [a, b] ] = [ [a, b) ] + [ {b} ] = [ {0} ]

in K0(Q[1]): every bounded closed interval has the same class as a point in the
Grothendieck group of definable subsets of Q. By induction on the dimension, one
can show more generally that [P ]n = [ {0} ]n for every n ≥ 0 and every bounded
polytope P in Qn.

Example 6.2.3. Let Γ be the definable subset Q>0 × Q≥0 in Q2. Then we can
partition Γ into the definable subsets

Γ1 = {(u, v) ∈ Q2 |u > v ≥ 0}
Γ2 = {(u, v) ∈ Q2 | v ≥ u > 0}

Each of these subsets is isomorphic to Γ, so that

[Γ] = [Γ1] + [Γ2] = [Γ] + [Γ]
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in K0(Q[2]), which implies [Γ] = 0. We will later show that [Q>0] and [Q≥0] are
different from zero in K0(Q[1]); thus, these elements are non-trivial zero divisors
in Kdim

0 (Q).

Seeing these examples, you may wonder if there is any interesting geometric
information left in Kdim(Q). Such information can be extracted by constructing
suitable additive invariants of definable sets in Qn; this means that we attach a
value in an abelian group G to any definable set in Qn such that this value is stable
under isomorphism and additive with respect to partitions. Such invariants induce
a group morphism Kdim(Q) → G.

Proposition 6.2.4. There is a unique way to attach a value χ(Γ) ∈ Z to every
definable subset Γ in Qn, for every n ≥ 0, such that the following properties are
satisfied:

(1) for every bounded non-empty polytope P , we have χ(P ) = 1;
(2) we have χ(Q≥0) = 0;
(3) (additivity) if Γ′ ⊂ Γ are definable subsets of Qn, then

χ(Γ) = χ(Γ′) + χ(Γ \ Γ′);

(4) (multiplicativity) if Γ is a definable subset of Qm and Γ′ is a definable subset
of Qn, then

χ(Γ × Γ′) = χ(Γ) · χ(Γ′);

(5) (invariance) for every definable subset Γ of Qn and every affine
transformation

ϕ : Qn → Qn, w 7→ Aw + b

with A ∈ GLn(Q) and b ∈ Qn, we have

χ(Γ) = χ(ϕ(Γ)).

In particular, χ takes the same value on isomorphic definable sets.

Note that, in the invariance axiom, we do not require ϕ to be unimodular. The
invariant χ is called the Euler characteristic. The cleanest way to prove Proposition
6.2.4 is to use the theory of o-minimality in mathematical logic; see the book
“Tame topology and o-minimal structures” by L. van den Dries. The strategy is
to decompose any definable set into elementary pieces, for which the value of χ is
determined by the axioms in Proposition 6.2.4, and to show that the sum of the
Euler characteristics of the pieces is independent of the choice of the decomposition.
The Euler characteristic also has a topological interpretation: to any definable
subset in Qn one can attach a corresponding set in Rn in a canonical way, defined
by the same linear inequalities and Boolean operations; for such sets we can use
the Euler characteristic with compact supports to define the invariant χ.

Since χ is additive, multiplicative and constant on isomorphism classes, it defines
a ring morphism

χ : Kdim
0 (Q) → Z, [Γ]n 7→ χ(Γ),

which we can use to distinguish certain classes in the Grothendieck ring of definable
sets.

Example 6.2.5. Additivity implies that

χ(Q>0) = χ(Q≥0) − χ({0}) = 0 − 1 = −1.

This shows in particular that [Q>0] ̸= 0 in K0(Q[1]).
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We can tweak the construction of the Euler characteristic to obtain a second
invariant.

Proposition 6.2.6. There is a unique way to attach a value χ′(Γ) ∈ Z to every
definable subset Γ in Qn, for every n ≥ 0, such that the following properties are
satisfied:

(1) for every non-empty polytope P , we have χ′(P ) = 1;
(2) (additivity) if Γ′ ⊂ Γ are definable subsets of Qn, then

χ′(Γ) = χ′(Γ′) + χ′(Γ \ Γ′);

(3) (multiplicativity) if Γ is a definable subset of Qm and Γ′ is a definable subset
of Qn, then

χ′(Γ × Γ′) = χ′(Γ) · χ′(Γ′);

(4) (invariance) for every definable subset Γ of Qn and every affine
transformation

ϕ : Qn → Qn, w 7→ Aw + b

with A ∈ GLn(Q) and b ∈ Qn, we have

χ(Γ) = χ(ϕ(Γ)).

In particular, χ takes the same value on isomorphic definable sets.

The key difference with the Euler characteristic χ is the behaviour on unbounded
polytopes. The invariant χ′ is called the bounded Euler characteristic, for the
following reason: if Γ is a definable subset of Qn, then one can show that for all
sufficiently large elements a of Q, the value

χ(Γ ∩ [−a, a]n)

is independent of a. This limit value is precisely the bounded Euler characteristic
χ′(Γ). We again obtain a ring morphism

χ′ : Kdim
0 (Q) → Z, [Γ]n 7→ χ′(Γ).

Example 6.2.7. Since Q≥0 is a polytope in Q, we have χ′(Q≥0) = 1, so that
[Q≥0] ̸= 0 in K0(Q[1]).

It turns out that the invariants χ and χ′ completely characterize homogeneous
classes of fixed degree in Kdim

0 (Q). More precisely, we have the following theorem.

Theorem 6.2.8. The ring morphism

Kdim
0 (Q) → Z[x, y]/(xy), [Γ]n 7→ (−1)nχ(Γ)xn + χ′(Γ)yn

is an isomorphism of graded rings. Its inverse maps x to [Q>0]1 and y to [Q≥0]1.

Proof. We only give a sketch of the argument. We have seen in Example 6.2.3
that [Q>0]1 · [Q≥0]1 = 0 in Kdim

0 (Q). Consequently, the unique ring morphism
Z[x, y] → Kdim

0 (Q) that maps x to [Q>0]1 and y to [Q≥0]1 factors through a graded
ring morphism

Z[x, y]/(xy) → Kdim
0 (Q).

We have χ(Q≥0) = 0 and χ′(Q≥0) = 1. Writing Q≥0 as the disjoint union of {0}
and Q>0, the additivity of χ and χ′ implies that χ(Q>0) = −1 and χ′(Q>0) = 0.
It follows that the morphism

Z[x, y]/(xy) → Kdim
0 (Q)



MOTIVIC INTEGRATION, TROPICAL GEOMETRY, RATIONALITY 25

is left inverse to the morphism in the statement. Therefore, we only need to show
that every element in Kdim

0 (Q) can be written as a polynomial combination of
[Q>0]1 and [Q≥0]1 with coefficients in Z. This follows from a (somewhat involved)
decomposition argument. □

A surprising consequence of Theorem 6.2.8 is that the class of a definable set is
preserved by all affine transformations, not only the unimodular ones.

Corollary 6.2.9. Let Γ be a definable subset in Qn, and let

ϕ : Qn → Qn, w 7→ Aw + b

be an affine transformation, with A ∈ GLn(Q) and b ∈ Qn. Then [Γ] = [ϕ(Γ)] in
Kdim

0 (Q).

Proof. This follows at once from the invariance of χ and χ′ under affine
transformations. □

Corollary 6.2.9 implies that we would have gotten exactly the same Grothendieck
ring if we had allowed arbitrary affine transformations in our definition of
isomorphisms of definable sets, which begs the question why we used the more
restrictive definition in the first place. The reason is provided by the following
exercise, which is false with respect to arbitrary affine transformations.

Exercise 6.2.10. Let Γ and Γ′ be isomorphic definable sets in Qn. Show that
trop−1(Γ) and trop−1(Γ′) are isomorphic semialgebraic subsets of (K∗)n.

It follows that there exists a unique ring morphism

Θ: Kdim
0 (Q) → K0(VFK)

that maps [Γ]n to [trop−1(Γ)] for every n ≥ 0 and every definable subset Γ in Qn,
where

trop: (K∗)n → Qn

is the tropicalization map in dimension n. Indeed, applying trop−1 commutes with
taking partitions and products, so that Θ respects the scissor relations and the ring
structure.

7. Lecture 7 (7 November)

In the previous lecture, we have seen how one can use the tropicalization map to
connect the Grothendieck ring of definable sets in Qn to the Grothendieck ring of
semialgebraic sets over K. We will now build a similar bridge between k-varieties
and semialgebraic sets using the specialization map.

7.1. The Grothendieck rings of varieties. Let F be a field. For every n ≥ 0,
we denote by K0(Var≤n

F ) the abelian group defined by the following presentation:

• generators: isomorphism classes [X]n of F -schemes X of finite type and of
dimension at most n;

• relations: whenever Y is a closed subscheme of X, we have

[X]n = [Y ]n + [X \ Y ]n.
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As usual, the scissor relations imply that [∅]n = 0. They also imply that K0(Var≤n
F )

does not detect any non-reduced structure: if X is a F -scheme of finite type of
dimension at most n, and Xred is its maximal reduced closed subscheme (defined
by the nilradical in OX), then Xred → X is a closed embedding with empty
complement, so that

[X]n = [Xred]n + [∅]n = [Xred]n.

We combine the groups K0(Var≤n
F ) into a graded abelian group

Kdim
0 (VarF ) =

⊕
n≥0

K0(Var≤n
F ).

Note that a F -scheme of finite type X defines a distinct element [X]n in Kdim
0 (VarF )

for each n ≥ dim(X). The graded abelian group Kdim
0 (VarF ) has a unique graded

ring structure such that, for all F -schemes X and X ′ of finite type and of dimensions
at most m, resp. n, we have

[X]m · [X ′]n = [X ×F X ′]m+n.

The identity element for the multiplication is [SpecF ]0, the class of a point placed
in degree 0. We call Kdim

0 (VarF ) the Grothendieck ring of F -varieties graded by
dimension.

We can also define a different ring by removing the bounds on dimension. We
denote by K0(VarF ) the abelian group defined by the following presentation:

• generators: isomorphism classes [X] of F -schemes X of finite type;
• relations: whenever Y is a closed subscheme of X, we have

[X] = [Y ] + [X \ Y ].

This abelian group has a unique ring structure satisfying [X] · [X ′] = [X ×F X ′]
for all F -schemes X and X ′ of finite type, with identity element [SpecF ]. The
resulting ring is called the Grothendieck ring of F -varieties. We will later see that
it contains strictly less information than the graded version. The next proposition
explains how the two rings are related.

Proposition 7.1.1. The forgetful map

Kdim
0 (VarF ) → K0(VarF ), [X]n 7→ [X]

is a surjective ring morphism, and its kernel is the ideal I generated by [SpecF ]1−
[SpecF ]0.

Proof. It is obvious that this map is a ring morphism, and that it is surjective. It
is also clear that it sends [SpecF ]1 − [SpecF ]0 to 0, so that it factors through a
ring morphism

Kdim
0 (VarF )/I → K0(VarF ).

This is an isomorphism: its inverse sends [X] to [X]n, for every F -scheme X of
finite type and any n ≥ dim(X). Note that the residue class of [X]n modulo I does
not depend on n because

[X]n+1 = [X]n · [SpecF ]1 = [X]n · [SpecF ]0 = [X]n

in Kdim
0 (VarF )/I. □
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Proposition 7.1.2. There exists a unique ring morphism

Θ: Kdim
0 (Vark) → K0(VFK)

such that, for every smooth separated R-scheme X of finite type and every
subscheme Z of X ×R k, we have

Θ([Z]n) = [sp−1
X (Z(k))]

where n denotes the dimension of X ×R K.

Proof. Uniqueness. Assume that a morphism Θ as in the statement exists. Let Z
be a k-scheme of finite type and let n be an integer such that n ≥ dim(Z). We will
prove that there is only one possible value for Θ([Z]n). Since k has characteristic
zero, we can partition Z into smooth separated subschemes (use generic smoothness
of the underlying reduced scheme Zred and noetherian induction). By the scissor
relations in Kdim

0 (Vark), we may assume that Z is itself smooth and separated. The
ring R is a k-algebra via the morphism k → R that maps an element a in k to the
constant Puiseux series a. Set

X = (Z ×k R) ×R An−dim(Z)
R .

This is a smooth separated R-scheme with dim(X ×R K) = n, and we can view Z
as a subscheme of X ×R k via the embedding

Id × {0} : Z → X ×R k = Z × An−dim(Z)
k

By the property in the statement, we must have

Θ([Z]n) = [sp−1
X (Z(k))] = [Z(R) ×mn−dim(Z)].

Existence. Let Z be a k-scheme of finite type and let n be an integer such that n ≥
dim(Z). Then our uniqueness proof shows that we can partition Z into subschemes
Z1, . . . , Zr such that for every i in {1, . . . , r}, there exists an embedding of Zi into
a smooth separated R-scheme Xi with dim(Xi ×R K) = n. Now we define

Θ([Z]n) =

r∑
i=1

[sp−1
Xi

(Zi(k))].

It follows from Exercise 5.1.2 that this expression does not depend on the choice of
the embeddings Zi → Xi. It is also independent of the choice of the partition for
Z, because any two partitions have a common refinement, and the scissor relations
imply that our expression is invariant under refinements of the partition. It follows
directly from the construction that Θ respects the scissor relations in Kdim

0 (Vark)
and that it is multiplicative, so that we obtain a ring morphism

Θ: Kdim
0 (Vark) → K0(VFK)

with the desired properties. □

The ring morphisms

Θ: Kdim
0 (Q) → K0(VFK)

Θ: Kdim
0 (Vark) → K0(VFK)

together induce a ring morphism

Θ: Kdim
0 (Q) ⊗Z Kdim

0 (Vark) → K0(VFK), a⊗ b 7→ Θ(a) · Θ(b).
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The core of the theory of motivic integration of Hrushovski and Kazhdan consists
of the following two miraculous properties.

Miracle A. The morphism

Θ: Kdim
0 (Q) ⊗Z Kdim

0 (Vark) → K0(VFK)

is surjective. In this sense, every semialgebraic set over K can be built5 from pieces
of the form trop−1(Γ) and sp−1

X (Z(k)), with Γ a definable subset of Qn, and with
X a smooth separated R-scheme and Z a subscheme of X ×R k.

Miracle B. The morphism Θ is not injective, but we can completely describe its
kernel.

Example 7.1.3. The semialgebraic set R∗ can be written as trop−1(0), where
trop: K∗ → Q is the tropicalization map in dimension 1, but also as

R∗ = Gm,R(R) = sp−1
Gm,R

(Gm,k(k)).

Consequently,

[R∗] = Θ([ {0} ]1 ⊗ 1) = Θ(1 ⊗ [Gm,k]1)

and the element

[ {0} ]1 ⊗ 1 − 1 ⊗ [Gm,k]1

lies in the kernel of Θ.

Example 7.1.4. The semialgebraic set m can be written as sp−1
A1

R
(0), so that

[m] = Θ(1 ⊗ [Spec k]1).

But we can also write

[m] = [m \ {0}] + [ {0} ]

= [trop−1(Q>0)] + [sp−1
SpecR(Spec k)]

= Θ([Q>0]1 ⊗ 1) + Θ(1 ⊗ [Spec k]0).

It follows that the element

[Q>0]1 ⊗ 1 + 1 ⊗ ([Spec k]0 − [Spec k]1)

also lies in the kernel of Θ.

Hrushovski and Kazhdan proved that the elements in Examples 7.1.3 and 7.1.4
generate the kernel of Θ. It is quite remarkable that these simple examples in
dimension one suffice to explain all possible relations in the kernel of Θ. Our two
miracles combine into the following theorem, which is the main result of this course.

Theorem 7.1.5 (Hrushovski-Kazhdan). The morphism Θ induces an isomorphism
of rings

Kdim
0 (Q) ⊗Z Kdim

0 (Vark)

([{0}]1 ⊗ 1 − 1 ⊗ [Gm,k]1, [Q>0]1 ⊗ 1 + 1 ⊗ ([Spec k]0 − [Spec k]1))
→ K0(VFK).

5Beware that we lose information by taking classes of semialgebraic sets in the Grothendieck

ring; for instance, [trop−1( [0, 1) )] = 0 because the class of this interval is 0 in the Grothendieck

ring of definable sets. Hrushovski and Kazhdan also prove finer results at the level of Grothendieck
semirings where classes can be added but not subtracted; the class of a semialgebraic set in the

Grothendieck semiring remembers the isomorphism type.
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This theorem expresses in a precise way how semialgebraic geometry over K is
controlled by convex geometry over Q and algebraic geometry over k. The proof
of this theorem is quite involved and uses mathematical logic (model theory of
algebraically closed valued fields); we currently do not have a purely geometric
proof of this statement.

We can formulate Theorem 7.1.5 in a different way by using the explicit
description of Kdim

0 (Q) in Theorem 6.2.8. There we proved that Kdim
0 (Q) is the

polynomial ring in the classes [Q>0]1 and [Q≥0]1 modulo the relation

[Q>0]1 · [Q≥0]1 = 0.

The element [Q>0]1 ⊗ 1 is equal to 1 ⊗ ([Spec k]1 − [Spec k]0) modulo the kernel of
Θ. Moreover,

[Q≥0]1 ⊗ 1 = ([Q>0]1 + [ {0} ]1) ⊗ 1

is equal to

1 ⊗ ([Spec k]1 − [Spec k]0 + [Gm,k]1) = 1 ⊗ ([A1
k]1 − [Spec k]0)

modulo the kernel of Θ. Thus, we can rewrite Theorem 7.1.5 in the following form.

Theorem 7.1.6. The morphism

Θ: Kdim
0 (Vark) → K0(VFK)

is surjective and factors through an isomorphism of rings

Kdim
0 (Vark)

([Spec k]1 − [Spec k]0)([A1
k]1 − [Spec k]0)

→ K0(VFK).

In particular, pieces of the form sp−1
X (Z(k)), with X a smooth separated R-

scheme of finite type and Z a subscheme of X ×R k, already suffice to describe
all semialgebraic sets (at least at the level of Grothendieck rings). This description
looks simpler than the one in Theorem 7.1.6, but in concrete calculations it
is usually easier to find expressions also involving sets of the form trop−1(Γ).
Moreover, Theorem 7.1.5 can be refined to a statement about Grothendieck
semirings (retaining more information) while this is not possible for Theorem 7.1.6.
For these reasons, Theorem 7.1.5 is more natural than Theorem 7.1.6.

8. Lecture 8 (10 November)

8.1. The motivic volume. Using Theorem 7.1.5 (or its variant Theorem 7.1.6) we
can define various invariants of semialgebraic sets by constructing ring morphisms
from K0(VFK) to rings that we understand better. An important example is the
motivic volume, which was originally defined by Hrushovski and Kazhdan.

Corollary 8.1.1. There exists a unique ring morphism

Vol : K0(VFK) → K0(Vark)

that satisfies the following properties.

(1) For every separated smooth R-scheme X of finite type and every subscheme
Z of X ×R k, we have

Vol([sp−1
X (Z(k))]) = [Z].

(2) For every definable subset Γ of Qn, we have

Vol([trop−1(Γ)]) = χ′(Γ)[Gn
m,k].
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Proof. Uniqueness is clear, because the classes of semialgebraic sets of the form
sp−1

X (Z(k)) and [trop−1(Γ)] generate the ring K0(VFK). So let us prove existence.
There exists a unique ring morphism

Kdim
0 (Q) → K0(Vark)

that maps [Γ]n to χ′(Γ)[Gn
m,k] for every n ≥ 0 and every definable subset Γ in Qn.

Together with the forgetful morphism

Kdim
0 (Vark) → K0(Vark), [Z]n 7→ [Z],

it induces a ring morphism

Ψ: Kdim
0 (Q) ⊗Z Kdim

0 (Vark) → K0(Vark).

We will show that Ψ is zero on the kernel of the morphism Θ in Theorem 7.1.5. We
have

Ψ([ {0} ]1 ⊗ 1 − 1 ⊗ [Gm,k]1) = [Gm,k] − [Gm,k] = 0;

this explains why we have added the factor [Gn
m,k] in our expression for

Vol([trop−1(Γ)]n) in the statement. We also have

Ψ([Q>0]1 ⊗ 1− 1⊗ ([Spec k]1 − [Spec k]0) = χ′(Q>0)[Gm,k] + [Spec k]− [Spec k] = 0

because χ′(Q>0) = 0. This explains why we used the bounded Euler characteristic
χ′, rather than the Euler characteristic χ, in the construction of Vol (note that
χ(Q>0) = −1). It follows that Ψ factors through a ring morphism

K0(VFK) → K0(Vark)

with the desired properties. □

Remark 8.1.2. We could also have used Theorem 7.1.6 to construct the morphism
Vol: the forgetful morphism

Kdim
0 (Vark) → K0(Vark) = Kdim

0 (Vark)/([Spec k]1 − [Spec k]0)

from Proposition 7.1.1 factors through a ring morphism

Kdim
0 (Vark)

([Spec k]1 − [Spec k]0)([A1
k]1 − [Spec k]0)

→ K0(Vark)

whose source is isomorphic to K0(VFK). This provides the finer statement that
Vol is already uniquely determined by the first property in Corollary 8.1.1, and
that Vol is a surjective ring morphism with kernel generated by

Θ([Spec k]1 − [Spec k]0) = [m \ {0}].

For concrete calculations, it is often convenient to use the second property in
Corollary 8.1.1, as well, which is why we included it in the statement.

When S is a semialgebraic set over K, we will usually write Vol(S) instead of
Vol([S]) to unburden the notation. We call this invariant the motivic volume of S.
The name motivic volume refers to the fact that we can view it as a measure of the
size of semialgebraic sets, where the measure takes values in the Grothendieck ring
K0(Vark). This idea goes back to the very origins of motivic integration: Batyrev
used p-adic integration (a classical integration theory with measures taking values
in R) to prove that birational Calabi-Yau varieties over C have the same betti
numbers. Kontsevich realized that one could prove a stronger result (equality of
Hodge numbers) by upgrading p-adic integration to a geometric integration theory,
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taking values in the Grothendieck ring of varieties. This idea kickstarted the
development of motivic integration, with the theory of Hrushovski and Kazhdan as
an important branch.

Example 8.1.3. Let us show how to compute the motivic volume on a simple
example. Let X be a separated R-scheme of finite type such that X ×R K has
dimension one. We make the following assumptions about the geometry of X .

(1) The special fiber X ×R k consists of two irreducible components, E1 and
E2, that intersect at a unique point O.

(2) The open subscheme X \ {O} is smooth over SpecR.
(3) We can find an open neighbourhood U of O in X that admits an étale

morphism
h : U → Y = SpecR[x, y]/(xy − tq)

with q ∈ Q>0. Such a morphism automatically maps O to the origin
0 = (0, 0) of

Y ×R k = Spec k[x, y]/(xy).

We set Eo
1 = E1 \ {O} and Eo

2 = E2 \ {O}. Then Eo
1 , Eo

2 and {O} form a partition
of X ×R k into subschemes, which induces a partition

X (R) = sp−1
X (Eo

1(k)) ⊔ sp−1
X (Eo

2(k)) ⊔ sp−1
X (O)

of X (R) into semialgebraic subsets.
Every R-point in sp−1

X (Eo
1) factors through the open subscheme X \{O}, which

is smooth over SpecR by assumption. Therefore, the class

[sp−1
X (Eo

1)] = [sp−1
X \O(Eo

1)] ∈ K0(VFK)

corresponds to 1 ⊗ [Eo
1 ]1 under the isomorphism in Theorem 7.1.5. Similarly, we

can write [sp−1
X (Eo

2)] as 1 ⊗ [Eo
2 ]k.

Since
h : U → Y = SpecR[x, y]/(xy − tq)

is étale and R is henselian, the map

sp−1
U (O) → sp−1

Y (0)

induced by h is bijective, and therefore an isomorphism of semialgebraic sets. We
have

sp−1
Y (0) = {(a, b) ∈ m2 | ab = tq}

and via the projection onto the first coordinate, this semialgebraic set is isomorphic
to

{a ∈ K∗ | 0 < v(a) < q} = trop−1( (0, q) ).

It follows that, under the isomorphism in Theorem 7.1.5, the class [sp−1
X (O)]

corresponds to

[ (0, q) ]1 ⊗ 1 = [ [0, q) ]1 ⊗ 1 − [ {0} ]1 ⊗ 1 = −[ {0} ]1 ⊗ 1

where the last equality follows from Example 6.2.2.
Putting everything together, we see that we can express the class of X (R) as

1 ⊗ ([Eo
1 ]1 + [Eo

2 ]1) − [ {0} ]1 ⊗ 1

in the ring
Kdim

0 (Q) ⊗Kdim
0 (Vark)

ker(Θ)
∼= K0(VFK).
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Applying the morphism Vol yields

Vol(X (R)) = [Eo
1 ] + [Eo

2 ] − [Gm,k]

in K0(Vark). This is the motivic volume of the semialgebraic set X (R).
A special case of this calculation is

X = Spec [x, y]/(xy − tq)

with q ∈ Q>0. Then E1
∼= E2

∼= A1
k so that Eo

1 and Eo
2 are both isomorphic to

A1
k \ {0} = Gm,k. Our formula for the motivic volume becomes

Vol(X (R)) = [Gm,k]

which is consistent with the fact that X (R) is isomorphic with trop−1( [0, q] ) via
the projection onto one of the coordinates.

8.2. Strictly semistable models. The geometric set-up in Example 8.1.3 can be
generalized in the following way.

Definition 8.2.1. Let X be a separated R-scheme of finite type. We say that X
is strictly semistable if we can cover X by open subschemes that admit an étale
morphism to a scheme of the form

SpecR[x1, . . . , xn]/(x1 · · ·xm − tq)

with 0 < m ≤ n and q ∈ Q>0.

Note that the special fiber of SpecR[x1, . . . , xn]/(x1 · · ·xm − tq) is a union of
coordinate hyperplanes in An

k . From this, one can deduce that the irreducible
components of X ×R k are smooth and intersect each other transversely; this is
the key feature of strictly semistable schemes. The definition also implies that the
generic fiber of a strictly semistable R-scheme is smooth, because it is locally étale
over a smooth K-scheme. Conversely, the following deep result expresses that every
separated R-scheme of finite type with smooth generic fiber can be modified into a
strictly semistable scheme.

Theorem 8.2.2. Let X be a separated R-scheme of finite type such that X ×RK is
smooth over SpecK. Then there exists a proper morphism of R-schemes h : X ′ →
X such that the induced morphism X ′ ×R K → X ×R K is an isomorphism, and
such that X ′ is strictly semistable.

This result follows from Hironaka’s resolution of singularities in characteristic
zero, one of the cornerstones of algebraic geometry (and one of the biggest open
problems in positive characteristic). The fact that h restricts to an isomorphism
between the generic fibers implies that it induces an isomorphism of semialgebraic
sets X (K ′) → X (K). The fact that h is proper implies that this further restricts
to an isomorphism of semialgebraic sets X ′(R) → X (R), by the valuative criterion
for properness. Thus, we can use the strictly semistable R-scheme X ′ to describe
the semialgebraic set X (R).

Corollary 8.2.3. For every smooth and proper K-scheme X, there exists a strictly
semistable proper R-scheme X whose generic fiber X ×R K is isomorphic to X.

Proof. By Nagata’s compactification theorem, there exists a proper R-scheme
whose generic fiber is isomorphic with X. By Theorem 8.2.2, we can modify it
into a strictly semistable proper R-scheme without altering the generic fiber. □
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A scheme X as in the statement of the corollary is called a strictly semistable
R-model for X. The existence of such models is a key tool in the study of schemes
and semialgebraic sets over K.

We are now ready to state a generalization of Example 8.1.3 to arbitrary
dimensions. Let X be a strictly semistable R-scheme, and assume that X ×RK has
pure dimension n (that is, each irreducible component of X ×R K has dimension
n). We denote by Ei, i ∈ I, the irreducible components of the special fiber X ×Rk.
For every nonempty subset J of I, we set

EJ =
⋂
j∈J

Ej , Eo
J = EJ \

(⋃
i/∈J

Ei

)
.

The set EJ is closed in X ×R k, and Eo
J is locally closed. We endow them with

their induced reduced subscheme structures. The schemes EJ and Eo
J are either

empty or of pure dimension n− |J | − 1. As J varies over the nonempty subsets of
I, the schemes Eo

J form a partition of X ×R k into subschemes. In the set-up of
Example 8.1.3, we had E{1,2} = Eo

{1,2} = {O}.

Theorem 8.2.4. For every subscheme Z of X ×R k, we have

[sp−1
X (Z(k))] =

∑
∅̸=J⊂I

(−1)|J|−1[ {0} ]|J|−1 ⊗ [Eo
J ∩ Z]n−|J|−1

in Kdim
0 (Q) ⊗Z Kdim

0 (Vark)/ ker(Θ), and

Vol(sp−1
X (Z(k))) =

∑
∅̸=J⊂I

(−1)|J|−1[G|J|−1
m,k ][Eo

J ∩ Z]

in K0(Vark).
In particular,

[X (R)] =
∑

∅̸=J⊂I

(−1)|J|−1[ {0} ]|J|−1 ⊗ [Eo
J ]n−|J|−1

and
Vol(X (R)) =

∑
∅≠J⊂I

(−1)|J|−1[G|J|−1
m,k ][Eo

J ].

The second part of the statement follows from the first by setting Z = X ×R k.
The formula for the motivic volume is an immediate consequence of the expression
for the class of sp−1

X (Z(k)). This expression can be proved in a similar way as in
Example 8.1.3, but the argument becomes more involved because for 1 < |J | < n+1
the class of sp−1

X ((Eo
J ∩ Z)(k)) will involve contributions from both Kdim

0 (Q) and

Kdim(Vark).
Theorem 8.2.4 enables us, in particular, to write down explicit expressions for

the motivic volumes of semialgebraic sets of the following forms:

• X(K), with X a smooth and proper K-scheme;
• the semialgebraic Milnor fiber MFsa

f,x associated with a regular function f
on a smooth k-scheme of finite type, and a k-point x in the zero locus of f
(see Definition 2.1.1).

Indeed, Theorem 8.2.2 guarantees that we can reduce the problem to a set-up
covered by Theorem 8.2.4, at least in theory: finding explicit strictly semistable
models can be complicated in practice. In sufficiently generic situations, such
models can be constructed using tropical geometry.
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9. Lecture 9 (14 November)

In the previous lecture, we have defined the motivic volume that attaches an
element of K0(Vark) to each semialgebraic set over K, and we have explained how
to compute it explicitly on a strictly semistable model. Of course, this construction
is only useful if we know how to extract information from classes in K0(Vark). In
the following lectures, we will try to answer the following closely related questions.

(1) Which properties of a k-scheme of finite type can we read off from its class
in the Grothendieck ring of varieties?

(2) What does it mean when two k-schemes of finite type have the same class
in the Grothendieck ring of varieties?

We will start, more generally, over an arbitrary field F , although we will soon be
obliged to restrict to characteristic zero to obtain the most powerful results.

9.1. Additive invariants. An additive invariant of F -varieties is a map α from
the set of isomorphism classes of F -schemes of finite type to some abelian group A,
such that6

α(X) = α(X \ Y ) + α(Y )

for every F -scheme X of finite type and every closed subscheme Y of X. This means
that α respects the scissor relations in the definition of K0(VarF ), and giving such
an additive invariant is equivalent to giving a group morphism

α : K0(VarF ) → A, [X] 7→ α(X).

In other words, the map that attaches to every F -scheme of finite type its class in the
Grothendieck ring of F -varieties is the universal additive invariant of F -varieties,
in the sense that every additive invariant factors through it.

We say that an additive invariant α is multiplicative if the target A is a ring and

α(X ×F X ′) = α(X) · α(X ′)

for all F -schemes X and X ′ of finite type. This is equivalent to saying that the
group morphism

α : K0(VarF ) → A

is also a morphism of rings.
These definitions give a tautological answer to our first question: the properties

we can read off from the Grothendieck ring of varieties are those that can be
expressed in terms of additive invariants. Therefore, the information content of
K0(VarF ) depends on how many additive invariants we can construct. Let us
consider some important examples.

9.1.1. Point counting. An elementary (but interesting!) example of an additive
invariant is the number of rational points over a finite field. If F is finite and X is
a F -scheme of finite type, then X(F ) is a finite set, because An

F (F ) = Fn is finite
for every n ≥ 0, and X can be covered by finitely many affine opens. Counting
F -points is obviously additive and multiplicative, so that we get a ring morphism

#: K0(VarF ) → Z, [X] 7→ #X(F ).

6We slightly abuse notation by writing α(X) for the value of α on the isomorphism class of X.
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9.1.2. The Euler characteristic. If F = C then, for every C-scheme X of finite type,
we can consider the set X(C) of closed points with its Euclidean topology; if X is
a subscheme of An

C this is just the induced topology from An
C(C) = Cn. Using the

machinery of algebraic topology, one can attach to X(C) its singular cohomology
spaces with compact supports which measure the shape of X(C): for each j in
{0, . . . , 2 dim(X)} we get a finite dimensional Q-vector space Hj

c (X(C),Q). The
Euler characteristic with compact supports of X is then defined as

χ(X) =
∑
j≥0

(−1)j dimHj
c (X(C),Q).

The fundamental properties of cohomology with compact supports imply that χ is
an additive and multiplicative invariant; it defines a ring morphism

χ : K0(VarC) → Z.

Over arbitrary fields F , we can still define a similar invariant by replacing singular
cohomology by étale cohomology.

9.1.3. The Betti polynomial. For any field F , the Betti polynomial of a F -scheme
X of finite type is an element P (X; t) ∈ Z[t] that satisfies the following properties.

(1) It is additive and multiplicative with respect to X, so that it defines a ring
morphism

P : K0(VarF ) → Z[t], [X] 7→ P (X; t).

(2) It has degree 2 dim(X) and its leading coefficient equals the number of
irreducible components of maximal dimension of X ×F F a, where F a is an
algebraic closure of F . Thus we can read of the dimension of X from its
class in the Grothendieck ring of varieties. In particular, P (X; t) = 0 if and
only if X is empty.

(3) It specializes to the Euler characteristic at t = 1: we have P (X; 1) = χ(X).

When X is smooth and proper over F , then P (X; t) is given explicitly by

P (X; t) =

2 dim(X)∑
j=0

(−1)jbj(X)tj

where bj(X) is the j-th Betti number of X. For F = C, the j-th Betti number is the
dimension of the j-th singular cohomology space Hj(X(C),Q) = Hj

c (X(C),Q) of
the compact space X(C). For general F , we can again replace singular cohomology
by étale cohomology. The definition for schemes that are not smooth and proper
is much more subtle and requires Deligne’s theory of weights, the key ingredient to
the proof of the Riemann hypothesis over finite fields.

Exercise 9.1.1. Let F be any field. You may freely use that b0(P1
F ) = b2(P1

F ) = 1
and b1(P1

F ) = 0.

(1) For notational convenience, we write L = [A1
F ]. Show that, for every n ≥ 0,

[Pn
F ] = 1 + L + . . . + Ln

in K0(VarF ).
(2) Deduce that bj(Pn

F ) = 1 when j is an even element in {0, . . . , 2n} and
bj(Pn

F ) = 0 otherwise.
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9.1.4. The Hodge-Deligne polynomial. Assume that F has characteristic zero. Then
there is a unique way to attach to each F -scheme X of finite type a polynomial
HD(X;u, v) ∈ Z[u, v], called the Hodge-Deligne polynomial, such that the following
properties are satisfied.

(1) The Hodge-Deligne polynomial is additive and multiplicative, so that it
defines a ring morphism

HD: K0(VarF ) → Z[u, v], [X] 7→ HD(X;u, v).

(2) If X is smooth and proper over F , then

HD(X;u, v) =
∑
p,q≥0

(−1)p+qhp,q(X)upvq

where

hp,q(X) = dimHq(X,Ωp
X/F )

is the (p, q)-th Hodge number of X.

Uniqueness follows from the fact that the Grothendieck ring of varieties over a field
of characteristic zero is generated by the classes of smooth and proper schemes (we
will prove this in Corollary 9.2.3 below). Existence follows from Deligne’s theory of
mixed Hodge structures, the complex analytic part of his theory of weights. It can
also be deduced from Bittner’s presentation of the Grothendieck ring (see below).
Hodge theory implies that, when X is smooth and proper, we have

bj(X) =
∑

p+q=j

hp,q(X)

for all j ≥ 0, so that P (X; t) = HD(X; t, t) and χ(X) = HD(X; 1, 1). The Hodge-
Deligne polynomial is a refinement of the Betti polynomial that sees not only the
Betti numbers but also the Hodge numbers, for smooth and proper F -schemes.

9.2. Resolution of singularities and weak factorization. All the above
examples of additive invariants were constructed from various cohomology theories.
To obtain even finer information, we will need two major results from birational
geometry: resolution of singularities (which tells us that, by applying a specific
form of birational surgery, we can remove all singularities from a scheme) and weak
factorization (which explains how different resolutions of singularities are related).
Both of these theorems are currently known only in characteristic zero (and in
low dimension in positive characteristic). Resolution of singularities in positive
characteristic is one of the big open problems in algebraic geometry.

Theorem 9.2.1 (Hironaka’s resolution of singularities). Assume that F has
characteristic 0. Let X be an integral F -scheme of finite type, and let Z be a strict
closed subscheme of X. Then there exists a proper birational morphism h : X ′ → X
such that

(1) the scheme X ′ is smooth over F ;
(2) the inverse image h−1(Z) is a divisor with strict normal crossings on X ′:

this means that its irreducible components are smooth, and they all intersect
transversally;

(3) the morphism h is an isomorphism over the open subset of X where X is
already smooth and Z is already a strict normal crossings divisor.
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We say that h is a resolution of singularities for the pair (X,Z). There
exist explicit algorithms to construct such resolutions as compositions of blow-ups.
Hironaka’s original proof was several hundreds of pages long, and earned him a
Fields medal in 1970. Since then, many people have streamlined the algorithm and
generalized it to a wider class of schemes.

Corollary 9.2.2. Assume that F has characteristic 0. Every smooth separated
F -scheme X of finite type has a snc-compactification: a dense open embedding
X → X into a smooth and proper F -scheme X such that the boundary X \X (with
its induced reduced structure) is a strict normal crossings divisor.

Proof. We may assume that X is connected, since we can deal with each connected
component separately. Since X is separated, there exists a dense open embedding
X → X into a proper F -scheme X. Applying resolution of singularities to the pair
(X,X \ X) we can arrange that X is smooth and that the boundary is a strict
normal crossings divisor (note that this does not alter X because X is already
smooth). □

Corollary 9.2.3. Assume that F has characteristic 0. As an abelian group,
K0(VarF ) is generated by the classes of connected smooth and proper F -schemes.

Proof. Let X be a F -scheme of finite type. We need to write [X] as a Z-linear
combination of classes of connected smooth and proper F -schemes. Partitioning X
into smooth separated subschemes and applying the scissor relations, we reduce to
the case where X is smooth and separated. Let X → X be a snc-compactification
and let Di, i ∈ I be the irreducible components of the boundary. For every non-
empty subset J of I, we set

DJ =
⋂
j∈J

Dj .

Then by inclusion-exclusion, we can write

[X] = [X] +
∑

∅̸=J⊂I

(−1)|J|[DJ ].

Since the boundary is a strict normal crossings divisor, all the schemes DJ are
smooth and proper. Writing each [DJ ] as the sum of the classes of connected
components of DJ , we obtain an expression of the desired form. □

Thus, we can use snc-compactifications to write classes in the Grothendieck ring
in terms of classes of smooth and proper schemes. However, snc-compactifications
are not unique, so that we get many different expressions for the same object. The
following powerful result tells us that different snc-compactifications are connected
by finitely many elementary steps.

Theorem 9.2.4 (Weak factorization). Assume that F has characteristic 0. Let X

be a smooth and separated F -scheme of finite type, and let X → X and X → X
′

be two snc-compactifications of X. Then there exists a chain of proper birational
morphisms

X1 · · · Xr

X X2 Xr−1 X
′
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such that each Xi is a snc-compactification of X and each morphism in the chain
is an admissible blowup: a blow-up of a smooth center contained in the boundary
divisor that has transversal intersections with the boundary divisor.

The weak factorization theorem was proved by Abramovich, Karu, Matsuki and
W lodarczyk around 2000. The adjective weak refers to the existence of a stronger
version of the statement, which is still an open problem, where one first performs
a chain of blow-ups and then a chain of blow-downs (no alternations). I am not
aware of any potential applications of the strong version that do not already follow
from the weak version.

The key point of the weak factorization theorem is that admissible blow-ups are
a very mild form of birational surgery, and we understand quite well what happens
to the geometry of the scheme under such an operation. This gives us strong control
over all possible snc-compactifications of a smooth separated F -scheme. In the next
lecture, we will use this result to construct a new presentation for the Grothendieck
ring of varieties, which leads to further examples of additive invariants.

10. Lecture 10 (21 November)

10.1. Bittner’s presentation. We have proved in Corollary 9.2.3 that the
Grothendieck ring of varieties over a field of characteristic zero is generated by the
classes of connected smooth and proper schemes. The scissor relations, however,
still involve non-proper schemes because the complement of a closed subscheme
is only proper in trivial cases. Building upon the weak factorization theorem,
Bittner constructed an alternative presentation of the Grothendieck ring, which
only involves smooth and proper schemes.

Consider the abelian group Kbl
0 (VarF ) defined by the following presentation:

• generators: isomorphism classes [X]bl of connected smooth proper F -
schemes X;

• relations:
(1) [∅]bl = 0;
(2) for every connected smooth proper F -scheme X and every connected

smooth closed subscheme Y of X, we have

[BlY X]bl − [E]bl = [X]bl − [Y ]bl

where BlY X is the blowup of X along Y and E is the exceptional
divisor (the inverse image of Y in the blowup). These relations are
called blowup relations.

The abelian group Kbl
0 (VarF ) has a unique ring structure such that [X]bl · [X ′]bl is

the sum of the classes of the connected components of X ×F X ′, for all connected
smooth and proper F -schemes X and X ′.

The geometric set-up of the blowup relations is summarized in the blowup square

E BlY X

Y X

All schemes in this diagram are connected, smooth and proper over F . If Y = X
then BlY X and E are empty. Otherwise, the morphism BlY X → X is proper and
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birational; it restricts to an isomorphism

BlY X \ E → X \ Y.

The exceptional divisor E in BlY X a projective bundle over Y of rank one less than
the codimension of Y in X.

Theorem 10.1.1 (Bittner). Assume that F has characteristic zero. There exists
a unique ring morphism

α : Kbl
0 (VarF ) → K0(VarF )

that maps [X]bl to [X] for every connected smooth proper F -scheme X. This
morphism is an isomorphism.

Proof. Uniqueness of α is clear, because we have specified the images for a set of
generators of the source. To prove existence of α as a morphism of groups, we need
to show that the blowup relations follow from the scissor relations. This is true
because in K0(VarF ) we can write

[BlY X] − [E] = [BlY X \ E] = [X \ Y ] = [X] − [Y ].

It follows immediately from the definitions of the ring structures that α is a
morphism of rings.

The main point is proving that α is an isomorphism. We do this by constructing
an inverse. We only give a sketch of the argument to show how the weak
factorization theorem is used. Let X be a connected smooth separated F -scheme
of finite type, and choose a snc-compactification X → X. Let Di, i ∈ I be the
irreducible components of the boundary divisor. For each non-empty subset J of
I, we write [DJ ]bl for the sum of the classes of the connected components of DJ in
Kbl

0 (VarF ). Then we define an element β(X) in Kbl
0 (VarF ) by

β(X) = [X]bl +
∑

∅̸=J⊂I

[DJ ]bl.

A direct calculation shows that this expression is invariant under admissible blowups
of the snc-compactification X, so that it follows from the weak factorization theorem
that it only depends on X, and not on the choice of the snc-compactification.

If X is a F -scheme of finite type, then we choose a partition of X into connected
smooth separated subschemes X1, . . . , Xr and we set

β(X) =

r∑
i=1

β(Xi).

The most technical part of the proof is showing that this definition does not
depend on the choice of the partition. Since any two such partitions have a
common refinement, we may assume that X is itself connected, smooth and
separated; then the invariance under partition is proved by carefully choosing an
snc-compactification that is compatible with the partition in a suitable sense.

We obtain a ring morphism

β : K0(VarF ) → Kbl
0 (VarF ), [X] 7→ β(X)

that is inverse to the morphism α (prove that this is indeed an inverse as an
exercise). □
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Bittner’s presentation is very useful for the construction of new additive
invariants, since we now only need to define them on connected smooth proper
F -schemes and check that the blowup relations are satisfied. In particular, this
gives a proof of the existence of the Hodge-Deligne polynomial that does not use
mixed Hodge theory: one only needs to verify the behaviour of Hodge numbers
of smooth and proper schemes under blowups of smooth centers and in projective
bundles, which is well understood. Here we will focus on a new kind of invariant:
stable birational types.

10.2. Birational types and stable birational types. The ultimate goal of
algebraic geometry is the classification of algebraic varieties. This problem is
typically broken up into two parts: we first try to classify varieties up to birational
equivalence, which means that we ignore pieces of lower dimension. More precisely,
two integral F -schemes X and X ′ of finite type are called birational if they contain
isomorphic dense open subschemes. From the viewpoint of this equivalence relation,
the simplest schemes are those which are birational to a projective space Pn

F ; they
are called rational.

Proving that a given integral F -scheme of finite type is rational is easy in
principle: write down an isomorphism from a dense open subscheme to an open
in a projective space. For instance, one shows that all smooth quadrics over an
algebraically closed field are rational by projecting from a closed point onto a
projective space. Of course, in more complicated examples, finding such a map
can be very difficult.

But the hardest problem is proving that a given scheme is not rational, because
(except in low dimensions) we do not know computable invariants that can always
tell the difference between rational and non-rational schemes. To get more grip on
the problem, algebraic geometers have defined various weaker forms of rationality;
the most important are (from stronger to weaker) stable rationality, unirationality,
rational connectedness, uniruledness. Uniruledness is the weakest property but also
the best-behaved; at least conjecturally, it is controlled by a numerical invariant
(the Kodaira dimension).

The property that is the most intimately connected to the Grothendieck ring of
varieties is stable rationality. We say that two integral F -schemes X and X ′ of finite
type are stably birational if X ×F Pℓ

F is birational to X ′ ×F Pm
F for some ℓ,m ≥ 0.

We say that X is stably rational if it is stably birational to SpecF ; equivalently, if
X ×F Pℓ

F is rational for ℓ sufficiently large.

Exercise 10.2.1. Show that every rational integral F -scheme of finite type is also
stably rational.

The converse implication is much more delicate. If F is algebraically closed,
then rational is equivalent to stably rational for curves and surfaces (by Lüroth’s
theorem and Castelnuovo’s rationality criterion, respectively). For a long time,
it was an open problem to find an example of a stably rational variety over an
algebraically closed field that is not rational; the first such example was given by
Beauville, Colliot-Thélène, Sansuc and Swinnerton-Dyer around 1985 (a carefully
constructed hypersurface in A4

C). Thus being rational is a strictly stronger property
than being stably rational.

To explain the relation with the Grothendieck ring of varieties, we first construct
the ring of birational types and its stable version. We denote by BirF the set of
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birational equivalence classes {X}bir of integral F -schemes X of finite type. We
denote by Z[BirF ] the free abelian group with basis BirF . For every F -scheme X
of finite type, we set

{X}bir = {X1}bir + . . . + {Xr}bir ∈ Z[BirF ],

where X1, . . . , Xr are the irreducible components of X. The abelian group Z[BirF ]
has a unique ring structure such that

{X}bir · {X ′}bir = {X ×F X ′}bir
for all F -schemes X and X ′ of finite type. The resulting ring is called the ring of
birational types over F . Note that we have not introduced any additional relations
in this ring: by definition, two integral F -schemes of finite type are birational if
and only if they have the same class in Z[BirF ].

We define the ring Z[SBF ] of stable birational types in exactly the same way,
taking stable birational equivalence classes instead of birational equivalence classes.
The class in Z[SBF ] of a F -scheme X of finite type is denoted by {X}sb.

10.3. The theorem of Larsen and Lunts. The following remarkable theorem
shows that, even though the Grothendieck ring of varieties itself is a very
complicated object (that we still do not fully understand), one can give a beautiful
explicit description of the quotient of this ring by the ideal generated by the class
of the affine line.

Theorem 10.3.1 (Larsen-Lunts). Assume that F has characteristic zero. There
exists a unique ring morphism

sb: K0(VarF ) → Z[SBF ]

that maps [X] to {X}sb for every smooth and proper F -scheme X. This morphism
is surjective and its kernel is the ideal generated by [A1

F ].

Proof. We use Bittner’s presentation to construct the morphism sb. We need to
check that the blow-up relation is satisfied:

{BlY X}sb − {E}sb = {X}sb − {Y }sb
whenever X is a connected smooth and proper F -scheme and Y is a connected
smooth closed subscheme of X. If X = Y then both sides are 0 and the equation
is trivially satisfied. Otherwise, BlY X is birational to X, and E is birational to
Y ×F Pc−1

F with c = codimXY . In particular, BlY X is stably birational to X, and
E is stably birational to Y , which implies the blowup relation.

In order to compute the image of [A1
F ] under sb we express it in terms of classes

of smooth and proper schemes: viewing the affine line as the projective line minus
the point at infinity, we get [A1

F ] = [P1
F ] − [SpecF ] and therefore

sb([A1
F ]) = {P1

F }sb − {SpecF}sb = 0

since the projective line is stably birational to a point. It follows that sb factors
through a ring morphism

K0(VarF )/([A1
F ]) → Z[SBF ]

and we show that this is an isomorphism by constructing an inverse.
By resolution of singularities, we can write each element in the basis SBF of

Z[SBF ] as {X}sb where X is a connected, smooth and proper F -scheme (pick an
affine representative in the birational equivalence class, take its closure in projective
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space to make it proper, then resolve singularities to make it smooth). If X ′ is
another such representative, one can deduce from resolution of singularities and
the weak factorization theorem that X and X ′ are connected through a chain of
blowups of smooth centers. If Y is a connected smooth closed subscheme of X of
codimension c > 0, and E is the exceptional divisor in the blowup BlY X, then
[BlY X]− [X] = [E]− [Y ] and E is a projective bundle of rank c−1 over Y . Locally
on Y , such a bundle is a product: we can cover Y by open subschemes U such
that E ×Y U is isomorphic with U ×F Pc−1

F . The scissor relations now imply that

[E] = [Y ][Pc−1
F ]. By Exercise 9.1.1, the element [Pc−1

F ] is congruent to 1 modulo
[A1

F ], so that [E] − [Y ] = 0 in K0(VarF )/([A1
F ]). We conclude that X and X ′

have the same class in K0(VarF )/([A1
F ]), and sending {X}sb to this class defines

an inverse to the morphism

K0(VarF )/([A1
F ]) → Z[SBF ].

□

Remark 10.3.2. Beware that, when X is a F -scheme of finite type that is not
smooth and proper, then sb([X]) is usually not equal to {X}sb. For instance, we
have seen that sb([A1

F ]) = 0.

Corollary 10.3.3. Assume that F has characteristic zero. If two connected smooth
and proper F -schemes have the same class in K0(VarF ), then they are stably
birational.

Proof. This follows directly from the theorem. □

The corollary tells us that the Grothendieck ring of varieties remembers the
stable birational types of connected, smooth and proper schemes in characteristic
zero. In particular, it also remembers all invariants of connected smooth and
proper schemes that are constant on stable birational equivalence classes; important
examples are the existence of a F -rational point, the fundamental group (topological
for F = C, étale otherwise), and the Albanese variety.

11. Lecture 11 (28 November)

In this lecture, we continue our quest for birational information in the
Grothendieck ring of varieties. We will first discuss a class of varieties for which
birational equivalence and stable birational equivalence coincide.

11.1. Uniruled schemes. Let F be an algebraically closed field of characteristic
zero, and let X be a connected smooth proper F -scheme. If F is uncountable, then
we call X uniruled if, for every closed point x ∈ X, we can find a non-constant
morphism of F -schemes P1

F → X whose image contains x. If F is countable, then
we say that X is uniruled if the previous property holds after base change to any
uncountable algebraically closed field extension of F .

The property of being uniruled expresses that there exist many rational curves on
X. The distinction between few and many rational curves turns out to be a crucial
dichotomy in the birational classification of algebraic varieties. What is especially
convenient about uniruledness is that, at least conjecturally, it is controlled by
numerical invariants. A crucial source of information on the geometry of X is the
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canonical line bundle ωX/F = Ω
dim(X)
X/F . For every n > 0, the n-th plurigenus of X

is the dimension of the F -vector space

H0(X,ω⊗n
X/F ),

the space of global sections of the n-th tensor power of the line bundle ωX/K . The
Kodaira dimension is a number in the set {−∞, 0, 1, . . . ,dim(X)} that expresses
how fast the plurigenera grow when n tends to infinity; this is the most important
invariant in birational geometry. By definition, the Kodaira dimension is −∞ if
and only if all plurigenera are equal to zero, that is, if none of the powers ω⊗n

X/K

have non-zero global sections. It is known that uniruled schemes have Kodaira
dimension −∞; Mumford conjectured that the converse implication also holds.

Conjecture 11.1.1 (Mumford). The scheme X is uniruled if and only if it has
Kodaira dimension −∞.

The “if” implication has only been proved up to dimension 3; it is intimately
related to other major conjectures in birational geometry (the famous minimal
model programme). For our purposes, a useful feature of schemes that are not
uniruled is that birational and stable birational equivalence coincide.

Theorem 11.1.2. Let X and X ′ be connected smooth proper F -schemes of the
same dimension and assume that at least one of them is not uniruled. If X and X ′

are stably birational, then they are also birational (and neither of them is uniruled).

Proof. Let us sketch the rough idea of the proof. If X and X ′ are stably birational
then there exists a birational map

f : X ×F Pℓ
F 99K X ′ ×F Pm

F

for some ℓ,m ≥ 0. Since birational equivalence preserves dimension, and X and
X ′ have the same dimension, we have ℓ = m. For general X and X ′, we cannot
deduce the existence of a birational map X 99K X ′ because f need not respect the
product structure: it mixes up the geometry of X and Pℓ

F . However, if X or X ′

is not uniruled, this mixup is not possible because the geometries are too different.
In that case, one shows that f fits into a commutative diagram

X ×F Pℓ
F X ′ ×F Pℓ

F

X X ′

f

where the horizontal arrows are birational maps and the vertical arrows are the
projection morphisms. □

This result has interesting consequences for the structure of the Grothendieck
ring of varieties. As a first application, we give a modified version of a result due to
Poonen, who was the first to prove the existence of zero divisors in the Grothendieck
ring of varieties over an algebraically closed field.

Proposition 11.1.3 (Poonen). There exist elliptic curves A and B over C such
that [A]2 = [B]2 but [A] ̸= [B] in K0(VarC). Then [A] − [B] and [A] + [B] are
non-trivial zero divisors in K0(VarC).
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Proof. Shioda constructed an example of elliptic curves A and B over C such that
A ×C A and B ×C B are isomorphic, but A and B are not. Then A and B are
not birational (for smooth proper curves, isomorphic and birational are equivalent)
and therefore not stably birational (the only uniruled smooth proper curve over C
is the projective line, by Lüroth’s theorem). It follows from Corollary 10.3.3 that
[A] ̸= [B] in K0(VarC).

We have
([A] − [B])([A] + [B]) = [A]2 − [B]2 = 0

and the element [A] + [B] = [A ⊔ B] is non-zero by the existence of the Betti
polynomial. Consequently, [A] − [B] and [A] + [B] are non-trivial zero divisors in
K0(VarC). □

11.2. Piecewise isomorphisms and Borisov’s example.

Definition 11.2.1. Let F be any field, and let X and X ′ be F -schemes of finite
type. We say that X and X ′ are piecewise isomorphic if we can partition X
and X ′ into subschemes X1, . . . , Xr and X ′

1, . . . , X
′
r, respectively, such that Xj

is isomorphic to X ′
j for every j in {1, . . . , r}.

Note that, when X and X ′ are integral and piecewise isomorphic, then they are
birational because one of the pieces of the partition must contain the generic point.
Piecewise isomorphic F -schemes X and X ′ of finite type define the same class in
the Grothendieck ring of F -varieties: using the scissor relations, we can write

[X] = [X1] + . . . + [Xr] = [X ′
1] + . . . + [X ′

r] = [X ′].

Larsen and Lunts posed the question whether this is the only case where X and
X ′ define the same class in K0(VarF ). Somewhat suprisingly, the answer is no:
the latest breakthrough in the study of the Grothendieck ring if varieties is the
following result7 published by Borisov in 2018.

Theorem 11.2.2 (Borisov). There exist smooth projective Calabi-Yau varieties X
and X ′ of dimension 3 over C with the following properties:

(1) the schemes X and X ′ are not stably birational;
(2) we have [X ×C A6

C] = [X ′ ×C A6
C] in K0(VarC).

Proof. We only give a rough sketch of the argument. Borisov uses two explicit
examples X and X ′ which were known to be non-birational. The Calabi-Yau
property implies that ωX/C ∼= OX so that

H0(X,ωX/C) = H0(X,OX) = C;

this also applies to X ′. By the known implication in Mumford’s conjecture, X and
X ′ are not uniruled and therefore also not stably birational.

To prove the desired equality in the Grothendieck ring, Borisov essentially
constructs embeddings of Y = X ×C A6

C and Y ′ = X ′ ×C A6
C into some large

C-scheme Z of finite type such that the complements of these embeddings are
piecewise isomorphic (to be precise, these are only piecewise embeddings, but that
does not matter for the argument). Then we can write

[Y ] = [Z] − [Z \ Y ] = [Z] − [Z \ Y ′] = [Y ′]

7What is particularly intriguing about Borisov’s example is that it arose from mathematical
physics (string theory): the theory of mirror symmetry suggested that the geometries of X and

X′ should be closely related because they have the same mirror partner.
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in K0(VarC). □

Corollary 11.2.3. The class of A1
C is a zero-divisor in K0(VarC).

Proof. By Corollary 10.3.3, the schemes X and X ′ from Borisov’s example define
different classes in K0(VarC), but these classes become equal after multiplication
with the sixth power of [A1

C]. □

Corollary 11.2.4. There exist integral smooth C-schemes Y and Y ′ of finite type
such that [Y ] = [Y ′] in K0(VarC) but Y and Y ′ are not stably birational (in
particular, not piecewise isomorphic).

Proof. Since the schemes X and X ′ in Borisov’s example are not stably birational,
the schemes Y = X ×C A6

C and Y ′ = X ′ ×C A6
C are not stably birational, and

therefore not piecewise isomorphic. □

We see that the question of Larsen and Lunts has a negative answer because
subtraction gives a new source of equalities in the Grothendieck ring: schemes
with embeddings in a common ambient scheme such that the complements are
piecewise isomorphic. Borisov’s example shows that the original schemes need not
be piecewise isomorphic. We also see that the Grothendieck ring does not detect
stable birational types of smooth schemes of finite type that are not proper. A
fortiori, it also does not detect birational types of such schemes. It is still an
open problem whether connected smooth proper C-schemes with the same class in
K0(VarC) are birational. To circumvent this issue, we can pass to the Grothendieck
ring of varieties graded by dimension.

11.3. The graded Grothendieck ring detects birational types. Let F be any
field.

Theorem 11.3.1. There exists a unique ring morphism

bir : Kdim
0 (VarF ) → Z[BirF ]

such that, for every integer n ≥ 0 and every F -scheme of finite type and of
dimension at most n, the element bir([X]n) is the sum of the birational equivalence
classes of the n-dimensional irreducible components of X.

This ring morphism is surjective, and its kernel is the ideal generated by
[SpecF ]1.

Proof. Uniqueness of bir is clear; we leave its existence as an exercise. Since
SpecF has no one-dimensional irreducible components, bir([SpecF ]1) = 0, so that
bir factors through a ring morphism

Kdim
0 (VarF )/([SpecF ]1) → Z[BirF ].

We prove that this is an isomorphism by constructing an inverse. If X and X ′ are
birational integral F -schemes of finite type, then they have the same dimension d.
By definition, there exist dense open subschemes U ⊂ X and U ′ ⊂ X ′ such that U
and U ′ are isomorphic. We endow the closed subsets Y = X \ U and Y ′ = X ′ \ U ′

with their induced reduced structures. These are schemes of dimension at most
d− 1, so that we can write

[X]d − [X ′]d = [U ]d + [Y ]d − [U ′]d − [Y ′]d = [SpecF ]1([Y ]d−1 − [Y ′]d−1)
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in Kdim
0 (VarF ). It follows that the class of [X]d in Kdim

0 (VarF )/([SpecF ]1) only
depends on {X}bir, and this defines an inverse ring morphism

Z[BirF ] → Kdim
0 (VarF )/([SpecF ]1), {X}bir → [X]dim(X).

□

Corollary 11.3.2. Let X and X ′ be integral F -schemes of finite type and of
dimension d. If [X]d = [X ′]d in Kdim

0 (VarF ) then X and X ′ are birational.

Proof. This follows immediately from Theorem 11.3.1. □

In Borisov’s example, we have

[X ×C A6
C]9 ̸= [X ′ ×C A6

C]9

in Kdim
0 (VarC) because X ×C A6

C and X ′ ×C A6
C are not birational, but

[X ×C A6
C]n = [X ′ ×C A6

C]n

for n sufficiently large (in the notation of the proof of Theorem 11.2.2, for n ≥
dim(Z)).

12. Lecture 12 (5 December)

12.1. A refinement of the motivic volume. As we have seen in the previous
lecture, in order to pick up information about birational types it is convenient to
pass to the graded Grothendieck ring of varieties. Our original construction of the
motivic volume took values in the ordinary Grothendieck ring K0(Vark), but it
can be refined to take the grading into account by using the explicit formula from
Theorem 8.2.4 as a definition.

Theorem 12.1.1 (N.-Ottem). There exists a unique morphism of graded rings

Vol : Kdim
0 (VarK) → Kdim

0 (Vark)

such that, for every strictly semistable proper R-scheme X with X ×Rk =
∑

i∈I Ei

and every integer n ≥ dim(X ×R K), we have

Vol([X ×R K]n) =
∑

∅̸=J⊂I

(−1)|J|−1[Eo
J ×k G|J|−1

m,k ]n.

Proof. This result can be deduced from Hrushovski and Kazhdan’s description of
the Grothendieck semiring of semialgebraic sets (where subtraction is not allowed).
This also gives an extension of the refined volume to semialgebraic sets. But it is also
possible to give a proof based on algebraic geometry. One can formulate a variant
of Bittner’s presentation (Theorem 10.1.1) for the graded Grothendieck ring of K-
varieties. This shows in particular that this ring is generated by classes of the form
[X]n with X a connected smooth and proper K-scheme and n ≥ dim(X). Every
such K-scheme X has a strictly semistable model (Corollary 8.2.3) so that Vol is
uniquely characterized by the formula in the statement. To show its existence, one
uses the weak factorization theorem to compare different strictly semistable models
for the same connected smooth proper K-scheme and show that the formula for
Vol is independent of the model; then one shows that Bittner’s blow-up relations
are respected by constructing a strictly semi-stable model that is compatible with
the blow-up in a suitable sense. □
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Our new morphism Vol is connected to the previous one by means of the
commutative diagram

Kdim
0 (VarK) Kdim

0 (Vark)

K0(VFK) K0(Vark)

Vol

Vol

where Kdim
0 (VarK) → K0(VFK) is the ring morphism that sends [X]n to [X(K)]

for every K-scheme of X of finite type and every n ≥ dim(X) (note that X(K) is
a semialgebraic set so that we can take its class in K0(VFK).

Corollary 12.1.2. There exist unique ring morphisms

sp: Z[BirK ] → Z[Birk]
sp : Z[SBK ] → Z[SBk]

such that, for every strictly semistable proper R-scheme X with X ×Rk =
∑

i∈I Ei,
we have

sp({X ×R K}bir) =
∑

∅̸=J⊂I{EJ ×k P|J|−1
k }bir,

sp({X ×R K}sb) =
∑

∅̸=J⊂I{EJ}sb.

Proof. Uniqueness again follows from the fact that every birational (resp. stably
birational) equivalence class over K has a smooth and proper representative, so
that it suffices to prove existence.

The morphism Vol in Theorem 12.1.1 maps [SpecK]1 to [Spec k]1 (apply the
formula to X = SpecR) so that it descends to a ring morphism

Kdim
0 (VarK)/([SpecK]1) → Kdim

0 (Vark)/([Spec k]1).

By Theorem 11.3.1 we can identify the source with Z[BirK ] and the target with
Z[Birk], and we get a ring morphism

sp: Z[BirK ] → Z[Birk]

that maps {X ×R K}bir to∑
∅̸=J⊂I

(−1)|J|−1{Eo
J ×k G|J|−1

m,k }bir

for each X as in the statement. The scheme Eo
J ×k G|J|−1

m,k is birational to EJ ×k

P|J|−1 so that these schemes define the same class in Z[Birk]. The version for stable
birational types follows easily from the result for birational types (exercise). Note

that we can omit the factors P|J|−1
k in the formula because EJ is stably birational

to EJ ×k P|J|−1
k . □

The morphisms sp are called specialization morphisms. You should think of sp
as taking a limit of a (stable) birational type over the Puiseux series field K for
t → 0; they control what happens to (stable) birational types when we specialize
from the generic point of SpecR to the closed point of SpecR.
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Example 12.1.3. If X is a smooth and proper R-scheme and n ≥ dim(X ×RK),
then our formulas reduce to

Vol([X ×R K]n) = [X ×R k]n,

sp({X ×R K}bir) = {X ×R k}bir,
sp({X ×R K}sb) = {X ×R k}sb.

Indeed, the connected components of X ×Rk are smooth (in particular irreducible),
so that Eo

J is empty for all J ⊂ I with |J | ≥ 2 and X ×R k is the disjoint union of
the components Ei = Eo

i with i ∈ I.

Even this simple example already has striking implications, which resolved a long-
standing open problem in algebraic geometry.

12.2. Specialization of (stable) birational types.

Theorem 12.2.1 (Specialization of (stable) rationality). Let X be a smooth and
proper R-scheme. If X ×R K is rational (resp. stably rational), then X ×R k is
rational (resp. stably rational).

Proof. We only prove the result for rationality, the stable version is proved
analogously (or deduced from specialization of rationality by multiplying X with
Pℓ
R for sufficiently large ℓ). By definition, the K-scheme X ×R K is rational if and

only if

{X ×R K}bir = {Pn
K}bir

with n = dim(X ×R K). By Example 12.1.3, we have

sp({X ×R K}bir) = {X ×R k}bir.

Applying the example to X = Pn
R, we find

sp({Pn
K}bir) = {Pn

k}bir.

It follows that

{X ×R k}bir = {Pn
k}bir

so that X ×R k is rational. □

This result is highly non-trivial because a birational map X ×R K 99K Pn
K will

usually not extend to a rational map X 99K Pn
R that can be restricted to a birational

map between the special fibers. A basic example is the isomorphism

P1
K → P1

K , [x0, x1] 7→ [tx0, x1].

Note that this is indeed an isomorphism because t is invertible in K. It extends
uniquely to a morphism

P1
R \ {p} → P1

R

where p is the point [1, 0] in the special fiber P1
k. The restriction of this morphism

to the special fibers is the constant morphism

P1
k \ {p} → P1

k, [x0, x1] 7→ [0, 1]

which is clearly not birational.
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Remark 12.2.2. The genesis of the above results is a bit different from the way
we have presented them here. Evgeny Shinder and I first proved the stable versions
of Corollary 12.1.2 and Theorem 12.2.1 by using the non-refined version of Vol and
the theorem of Larsen and Lunts (Theorem 10.3.1). Maxim Kontsevich and Yuri
Tschinkel realized shortly afterwards that one could upgrade the specialization
morphism from stable birational types to birational types and deduce Theorem
12.2.1 for rationality instead of stable rationality. Both results were published in
2019. Finally, John Christian Ottem and I gave a common refinement of all these
specialization morphisms by refining the motivic volume as in Theorem 12.1.1.

Theorem 12.2.1 is important because it allows us to control the locus of (stably)
rational geometric fibers in smooth and proper families in characteristic zero. For
every scheme S and every point s ∈ S, a geometric point based at s is a morphism
SpecF → S with image s where F is an algebraically closed field. This is the same
thing as choosing an algebraically closed extension F of the residue field of S at s.

Theorem 12.2.3. Let S be a Noetherian Q-scheme and let X → S be a smooth
and proper morphism of schemes. Consider the sets

Srat = {s ∈ S |X ×S s is rational},
Ssrat = {s ∈ S |X ×S s is stably rational}

where s is any geometric point based at s (the definitions do not depend on the
choice of s). Then Srat and Ssrat are countable unions of closed subsets of S.

Note that the statement is false if we replace X ×S s by X ×S s; it is important
to pass to an algebraic closure of the residue field at s to get well-behaved sets.
There are many examples of non-rational schemes over a field that become rational
over an algebraically closed extension; for instance, the affine plane curve over R
defined by x2 + y2 + 1 = 0. This curve is not rational over R because it does not
have any points with coordinates in R, but it becomes rational over C (there it is
isomorphic to P1

C minus two points).

Proof. We prove the result for Srat; the statement for Ssrat follows from a similar
argument, or can be deduced from the result for Srat by replacing X by X ×S Pℓ

S

for all ℓ ≥ 0.
We will first show that Srat is a countable union of locally closed subsets of S

by means of an important technique that is often used in algebraic geometry. This
part of the statement had been known for a long time. Theorem 12.2.1 will then
allow us to replace locally closed by closed.

We may assume that S is connected, because we can treat each of the finitely
many connected components of S separately. For simplicity, let us also assume that
X → S is projective instead of merely proper; the general case can be reduced to
this one in a standard way.

Since S is connected, the fibers of the smooth and proper family X → S have
constant dimension; we denote this dimension by n. We denote by

H : (Sch/S)op → (Sets)

the relative Hilbert functor of X ×S Pn
S over S, from the opposite category of S-

schemes to the category of sets. The functor H sends each S-scheme T to the set
of closed subschemes of (X ×S Pn

S) ×S T that are flat over T . In particular, for
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every geometric point s : SpecF → S, H(s) is the set of closed subschemes of

(X ×S s) ×F Pn
F .

Grothendieck has proved that H is represented by a S-scheme, called the relative
Hilbert scheme, and that this scheme is a countable disjoint union of S-schemes of
finite type.

The idea is now to test rationality of geometric fibers of X → S by searching the
Hilbert scheme for graphs of birational maps. In each connected component C of H,
we can consider the geometric points c : SpecF → C such that the corresponding
closed subscheme of

(X ×S c) ×F Pn
F

is the graph of a birational map. The images of these geometric points in C
form a constructible subset, and by Chevalley’s theorem, the projection of this
constructible subset to S is still constructible (that is, a finite union of locally
closed subsets). Taking the union over the countably many connected components
of H, we find precisely the set Srat.

To conclude the argument, it suffices to prove that, for every locally closed
subset A of Srat, the closure of A is still contained in Srat. Let s be a point
in this closure. Then, for a suitable algebraically closed field k of characteristic
zero, one can construct a morphism SpecR → S such that the closed point of
SpecR is mapped to s and the generic point is mapped into A (this is analogous to
constructing a sequence of points in A that converges to s). Now X ×S SpecR is
a smooth and proper R-scheme with rational generic fiber (because A is contained
in Srat) and it follows from Theorem 12.2.1 that the special fiber of X ×S SpecR
is also rational, which means that s lies in Srat. □

Another interesting application of the specialization morphism for stable
birational types is that we can use it as an obstruction to stable rationality of
the generic fiber.

Corollary 12.2.4. Let X be a strictly semistable proper R-scheme, with X ×Rk =∑
i∈I Ei. If ∑

∅̸=J⊂I

(−1)|J|−1{EJ}sb ̸= {Spec k}sb

in Z[SBk], then X ×R K is not stably rational (in particular, not rational).

Proof. If X ×R K is stably rational then {X ×R K}sb = {SpecK}, so that

sp({X ×R K}sb) = sp({SpecK}sb) = {Spec k}sb.

□

In the next lecture, we will see a concrete application of this idea.

13. Lecture 13 (12 December)

In this lecture, we will use Corollary 12.2.4 to prove that very general quartic
hypersurfaces in P5

C and P6
C are not stably rational.
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13.1. Very general hypersurfaces. To explain what is meant by very general,
we consider the universal family of degree d hypersurfaces in Pn+1

C , for any d, n ≥ 1:

Hn,d ⊂ Pn+1
C ×C PH0(Pn+1

C ,O(d)) → PH0(Pn+1
C ,O(d)).

Here PH0(Pn+1
C ,O(d)) is the projectivization of the C-vector space H0(Pn+1

C ,O(d))
of homogeneous polynomials P of degree d in n+ 2 variables, and the fiber of Hn,d

over a point [P ] in this projective space is the hypersurface in Pn+1
C defined by any

representative P . The homogeneous polynomials defining a singular hypersurface
form a strict closed subset ∆n,d of PH0(Pn+1

C ,O(d)), defined by the vanishing of
the discriminant, and by restricting our universal family over the complement

Un,d = PH0(Pn+1
C ,O(d)) \ ∆n,d

we obtain the universal family

H sm
n,d → Un,d

of smooth degree d hypersurfaces in Pn+1
C . This is a smooth and proper morphism

of schemes.
We say that a property is true over a general (resp. very general) degree d

hypersurface in Pn+1
C if it holds for all the hypersurfaces parameterized by the closed

points in a non-empty Zariski-open subset of PH0(Pn+1
C ,O(d)) (resp. a countable

intersection of such opens). For instance, a general degree d hypersurface in Pn+1
C

is smooth.
So, to prove a property for a very general degree d hypersurface in Pn+1

C , we
may exclude countably many strict subsets defined by polynomial conditions on
the coefficients of an equation for the hypersurface. This is the correct notion
for rationality questions, because the locus of (stably) rational geometric fibers in
smooth and proper families is a countable union of closed subsets (Theorem 12.2.3).

13.2. The Lüroth problem. Before proving that very general quartic fourfolds
and fivefolds over C are not stably rational, we give a brief historical overview to
place this result in its proper context. An excellent survey is Beauville’s article
“The Lüroth problem” (arXiv:1507.02476).

Definition 13.2.1. Let F be a field, and let X be an integral F -scheme of finite
type. We say that X is unirational if there exists a dominant rational map of
F -schemes Pn

F 99K X for some n ≥ 0.

It is not hard to show that, if X is unirational, one can find a dominant rational
map Pn

F 99K X with n = dim(X). This notion expresses that points in a dense open
subscheme of X can be parameterized by an open in Pn

F (but, unlike for rationality,
the parameterization is not necessarily one-to-one).

Exercise 13.2.2. Show that rational ⇒ stably rational ⇒ unirational ⇒ uniruled.

In 1876, Lüroth proved that every field L between F and the field of rational
functions F (x) is of the form F (y), with y ∈ F (x). Thus, either F = L (when y
lies in F ) or L is isomorphic to the field of rational functions over F (when y does
not lie in F ). By the dictionary between dominant rational maps and extensions
of function fields, this is equivalent to saying that every unirational curve over F is
rational. Moreover, for curves, unirational and uniruled are equivalent by definition,
Therefore, in dimension one, all the different flavours of rationality coincide.
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In dimension 2, Castelnuovo (in characteristic 0) and Zariski (in general) proved
a numerical criterion for rationality: a connected smooth proper surface X over
an algebraically closed field F is rational if and only if the cohomology spaces
H1(X,OX) and H0(X,ω⊗2

X/F ) are both zero (recall that the dimension of the

latter space is called the second plurigenus of X). From this one can deduce
that rationality and stable rationality are equivalent in dimension 2, and that
they are also equivalent to unirationality if F has characteristic zero. In positive
characteristic, there are examples of surfaces that are unirational but not rational
(this is caused by the appearance of inseparable morphisms).

For a long time, it was an open problem to find examples in dimension ≥ 3 over
an algebraically closed field of characteristic zero which are unirational but not
rational; this became known as the Lüroth problem. It was solved independently
around 1970 by three groups of people.

Clemens and Griffiths proved that smooth hypersurfaces of degree 3 in P4
C

are never rational, while these were known to be unirational. They introduced
a sophisticated new invariant based on Hodge theory, called the intermediate
Jacobian, that forms an obstruction to rationality. Unfortunately, it is specific
to dimension 3 and does not obstruct stable rationality; it is still unknown whether
very general cubic threefolds are stably rational. Going up in dimension, it is
expected that very general cubic fourfolds are not rational, but this is one of the
main open problems in the field.

Iskovskikh and Manin proved that smooth hypersurfaces X of degree 4 in P4
C are

never rational. Segre had constructed in 1960 an example of such a hypersurface
that is unirational. To obstruct rationality, Iskovskikh and Manin proved that
the group of birational maps from X to itself is finite; on the other hand, this
group is clearly invariant under birational equivalence, and it is infinite (and quite
complicated) for P3

C. Only fairly recently, around 2015, Colliot-Thélène and Pirutka
proved that very general degree 4 hypersurfaces in P4

C are also not stably rational.
We do not know if they are unirational.

Artin and Mumford used the geometry of quartic double threefolds to construct
the first example of a unirational scheme over C that is not stably rational. A
quartic double threefold over C is an integral proper C-scheme X with a morphism
X → P3

C that is two-to-one except over a quartic surface in P3
C, where it is ramified.

The invariant used by Artin and Mumford is the subgroup of torsion elements in
the third cohomology group; they showed that this subgroup is invariant under
stable birational equivalence (contrary to the invariants used by Clemens-Griffiths
and Iskovskikh-Manin, which are only birational invariants). This group is trivial
for P3

C but not for Artin and Mumford’s example.

13.3. Voisin’s specialization method, Schreider’s bound and quartic
fivefolds. The field received a new boost around 2015 with the introduction of
Voisin’s specialization method, which is based on the theory of algebraic cycles
and Chow groups. The rough idea is to construct an obstruction to stable
rationality that can be computed on sufficiently mild degenerations (similar in
spirit to Corollary 12.2.4, but the obstruction is of a different nature and the class
of degenerations is also different). This technique has led to further breakthroughs
by many researchers and culminated in the following result by Schreieder, which is
the strongest general statement currently available.
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Theorem 13.3.1 (Schreieder). Let F be an algebraically closed field, and let n
and d be integers with n ≥ 3 and d ≥ log2 n + 2. Then a very general degree d
hypersurface in Pn+1

F is not stably rational.

With the exception of the irrationality of the cubic threefold, this bound covered
all the cases that were known at the time. It is remarkable for two reasons: there
is no restriction on the characteristic of F , and the bound on d is logarithmic in
n, while previous bounds by Kollár and Totaro were linear. Still, the bound is
probably far from sharp: it is expected that smooth hypersurfaces of degree at
least 4 are never stably rational. However, we currently do not know any value
of d such that very general degree d hypersurfaces are non-stably rational in all
dimensions.

Smooth hypersurfaces of dimension n ≥ 1 and degree d ∈ {1, 2} over an
algebraically closed field are all rational, and one of the big results of 19th century
algebraic geometry is the rationality of the cubic surface (n = 2, d = 3). The case
of higher-dimensional cubics is much more complicated. For instance, for n ≥ 5
odd, there is not a single example of a smooth cubic for which we know whether it
is rational or not. For n = 4, many families of rational cubic fourfolds over C were
constructed by Hassett, but we do not know any irrational example (note that the
existence of one such example would imply that a very general one is irrational, by
Theorem 12.2.1). This is symptomatic for the difficulty of rationality questions in
algebraic geometry.

We will now prove the first new case that falls outside Schreieder’s bound: quartic
fivefolds (d = 4 and n = 5). The same argument applies to quartic fourfolds, but
that case lies in Schreieder’s range and was originally proved by Totaro.

Theorem 13.3.2 (N.-Ottem). Very general hypersurfaces of degree 4 in P5
C and

P6
C are not stably rational.

Proof. Let n ∈ {4, 5}. Applying Theorem 12.2.3 to the universal family

Hn,4 → Un,d

of smooth hypersurfaces of degree 4 in Pn+1
C , we see that it suffices to find one

algebraically closed field extension F of C and one smooth hypersurface of degree 4
in Pn+1

C that is not stably rational. We will take F = K, the field of Puiseux series
over k = C, and will use Corollary 12.2.4 as an obstruction to stable rationality for
smooth and proper K-schemes.

Let f be a very general member of the space of homogeneous polynomials in
k[z0, . . . , zn+1] of degree 4 that are symmetric in zn and zn+1. We consider the
graded R-algebra R[z0, . . . , zn+1, y] where the z-variables have degree 1 and the
y-variable has degree 2. In this graded R-algebra, we have the homogeneous ideal
(ty−znzn+1, y

2−f) (the first generator is homogeneous of degree 2 and the second
is homogeneous of degree 4). We set

X = ProjR[z0, . . . , zn+1, y]/(ty − znzn+1, y
2 − f).

This is a proper R-scheme; it is not strictly semistable, but it belongs to a larger
class of models that still have mild singularities: the so-called strictly toroidal
schemes. For such a scheme one can explicitly construct a resolution to make
it strictly semistable, and the right-hand side in the formula for the specialization
map is invariant under this resolution, so that it also applies to strictly toroidal
proper R-schemes.
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Over the field K, where the element t is invertible, we can use the equation
ty − znzn + 1 = 0 to eliminate the y-variable:

X ×R K ∼= ProjK[z0, . . . , zn+1]/((znzn+1/t)
2 − f).

This is a smooth hypersurface of degree 4 in Pn+1
K (smoothness can be deduced

from the fact that we chose f to be very general). It suffices to prove that X ×RK
is not stably rational.

The special fiber

X ×R k = Proj k[z0, . . . , zn+1, y]/(znzn+1, y
2 − f)

has two irreducible components E1 and E2, defined by zn = 0 and zn+1 = 0,
respectively. These components are isomorphic because f is symmetric in zn and
zn+1. Their intersection is given by

E{1,2} = ProjR[z0, . . . , zn−1, y]/(y2 − f(z0, . . . , zn−1, 0, 0))

which is a very general quartic double (n−1)-fold (a double cover of Pn−1
k ramified

along a quartic hypersurface). For n = 4, Voisin used her specialization method
and the Artin-Mumford result to deduce that such a scheme is not stably rational.
For n = 5, this was proved by Hassett, Pirutka and Tschinkel.

Now the formula for the specialization of stable birational types (extended to
strictly toroidal schemes) tells us that

sp({X ×R K}sb) = {E1}sb + {E2}sb − {E{1,2}}sb
in Z[SBk]. The k-schemes E1 and E2 are isomorphic and therefore have the same
stable birational equivalence class. We also have

{E{1,2}}sb ̸= {Spec k}sb
because E{1,2} is not stably rational. Reducing our formula modulo 2, we find that

sp({X ×R K}sb) = {E{1,2}}sb ̸= {Spec k}sb
in F2[SBk], the F2-vector space with basis SBk. Corollary 12.2.4 now tells us that
X ×R K is not stably rational. □
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