Imperial College London

Emeritus ProfessorJeremyNicholson

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Emeritus Professor of Biological Chemistry
 
 
 
//

Contact

 

+44 (0)20 7594 3195j.nicholson Website

 
 
//

Assistant

 

Ms Wendy Torto +44 (0)20 7594 3225

 
//

Location

 

Office no. 665Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

982 results found

Garcia-Perez I, Posma JM, Chambers ES, Mathers JC, Draper J, Beckmann M, Nicholson JK, Holmes E, Frost Get al., 2023, Retraction Note: Dietary metabotype modelling predicts individual responses to dietary interventions(Nature Food, (2020), 1, (355-364), 10.1038/s43016-020-0092-z), Nature Food

The Chief Editor has retracted this article. The London–Brent Research Ethics Committee has informed the Chief Editor that, contrary to the statement in the article, the semi-controlled four-day feeding study utilised in this research and presented in the supplementary information, did not have approval. The authors have been invited to submit a new manuscript without this sub-study for peer review. All authors agree with this retraction.

Journal article

Yates JR, Cristea IM, Dong M-Q, Eyers CE, LaBaer J, Li JV, Nicholson JK, Overall CM, Palmblad M, Slavov Net al., 2022, Want to Publish in JPR? This Is What You Need to Know!, JOURNAL OF PROTEOME RESEARCH, Vol: 21, Pages: 2837-2839, ISSN: 1535-3893

Journal article

Gil-Redondo R, Conde R, Bizkarguenaga M, Bruzzone C, Laín A, González-Valle B, Iriberri M, Ramos-Acosta C, Anguita E, Arriaga Lariz JI, España Yandiola PP, Moran MÁ, Jiménez-Mercado ME, Egia-Mendikute L, Seco ML, Schäfer H, Cannet C, Spraul M, Palazón A, Embade N, Lu SC, Wist J, Nicholson JK, Mato JM, Millet Oet al., 2022, An NMR-based model to investigate the metabolic phenoreversion of COVID-19 patients throughout a longitudinal study., Metabolites, Vol: 12, Pages: 1-15, ISSN: 2218-1989

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

Journal article

Brignardello J, Fountana S, Posma JM, Chambers ES, Nicholson JK, Wist J, Frost G, Garcia-Perez I, Holmes Eet al., 2022, Characterization of diet-dependent temporal changes in circulating short-chain fatty acid concentrations: a randomized crossover dietary trial, The American Journal of Clinical Nutrition, Vol: 116, Pages: 1368-1378, ISSN: 0002-9165

Background: Production of Short-chain fatty acids (SCFAs) from food is a complex and dynamic saccharolytic fermentation process mediated by both human and gut microbial factors. SCFA production and knowledge of the relationship between SCFA profiles and dietary patterns is lacking. Objective: Temporal changes in SCFA levels in response to two contrasting diets were investigated using a novel GC-MS method.Design: Samples were obtained from a randomized, controlled, crossover trial designed to characterize the metabolic response to four diets. Participants (n=19) undertook these diets during an inpatient stay (of 72-h). Serum samples were collected 2-h after breakfast (AB), lunch (AL) and dinner (AD) on day 3 and a fasting sample (FA) was obtained on day 4. 24-h urine samples were collected on day 3. In this sub-study, samples from the two extreme diets representing a diet with high adherence to WHO healthy eating recommendations and a typical Western diet were analyzed using a bespoke GC-MS method developed to detect and quantify 10 SCFAs and precursors in serum and urine samples. Results: Considerable inter-individual variation in serum SCFA concentrations was observed across all time points and temporal fluctuations were observed for both diets. Although the sample collection timing exerted a greater magnitude of effect on circulating SCFA concentrations, the unhealthy diet was associated with a lower concentration of acetic acid (FA: coefficient=-17.0; standard error (SE)=5.8; p-trend=0.00615), 2-methylbutyric acid (AL: coefficient=-0.1; SE=0.028; p-trend=4.13x10-4 and AD: coefficient =-0.1; SE:=0.028; p-trend=2.28x10-3) and 2-hydroxybutyric acid (FA: coefficient=-15.8; standard error=5.11; p-trend: 4.09x10-3). In contrast lactic acid was significantly higher in the unhealthy diet (AL: coefficient=750.2; standard error=315.2; p-trend=0.024 and AD: coefficient=1219.3; standard error=322.6; p-trend: 8.28x10-4). Conclusion: The GC-MS method allowed robust mapping of

Journal article

Yau A, Fear MW, Gray N, Ryan M, Holmes E, Nicholson JK, Whiley L, Wood FMet al., 2022, Enhancing the accuracy of surgical wound excision following burns trauma via application of Rapid Evaporative IonisationMass Spectrometry (REIMS), BURNS, Vol: 48, Pages: 1574-1583, ISSN: 0305-4179

Journal article

Letertre M, Bhatt A, Harvey M, Nicholson J, Wilson I, Redinbo M, Swann Jet al., 2022, Characterizing the metabolic effects of the selective inhibition of gut microbial β-glucuronidases in mice, Scientific Reports, Vol: 12, ISSN: 2045-2322

The hydrolysis of xenobiotic glucuronides by gut bacterial glucuronidases reactivates previously detoxified compounds resulting in severe gut toxicity for the host. Selective bacterial β-glucuronidase inhibitors can mitigate this toxicity but their impact on wider host metabolic processes has not been studied. To investigate this the inhibitor 4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4′,5′:4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine (UNC10201652, Inh 9) was administered to mice to selectively inhibit a narrow range of bacterial β-glucuronidases in the gut. The metabolomic profiles of the intestinal contents, biofluids, and several tissues involved in the enterohepatic circulation were measured and compared to control animals. No biochemical perturbations were observed in the plasma, liver or gall bladder. In contrast, the metabolite profiles of urine, colon contents, feces and gut wall were altered compared to the controls. Changes were largely restricted to compounds derived from gut microbial metabolism. This work establishes that inhibitors targeted towards bacterial β-glucuronidases modulate the functionality of the intestinal microbiota without adversely impacting the host metabolic system.

Journal article

Sanabria J, Egan S, Masuda R, Lee AJ, Gibson GR, Nicholson JK, Wist J, Holmes Eet al., 2022, Overview of the Nomenclature and Network of Contributors to the Development of Bioreactors for Human Gut Simulation Using Bibliometric Tools: A Fragmented Landscape, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, Vol: 70, Pages: 11458-11467, ISSN: 0021-8561

Journal article

Nitschke P, Lodge S, Hall D, Schaefer H, Spraul M, Embade N, Millet O, Holmes E, Wist J, Nicholson JKet al., 2022, Direct low field J-edited diffusional proton NMR spectroscopic measurement of COVID-19 inflammatory biomarkers in human serum., The Analyst, Vol: 147, Pages: 4213-4221, ISSN: 0003-2654

A JEDI NMR pulse experiment incorporating relaxational, diffusional and J-modulation peak editing has been implemented for a low field (80 MHz proton resonance frequency) spectrometer system to measure quantitatively two recently discovered plasma markers of SARS-CoV-2 infection and general inflammation. JEDI spectra capture a unique signature of two biomarker signals from acetylated glycoproteins (Glyc) and the supramolecular phospholipid composite (SPC) signals that are relatively enhanced by the combination of relaxation, diffusion and J-editing properties of the JEDI experiment that strongly attenuate contributions from the other molecular species in plasma. The SPC/Glyc ratio data were essentially identical in the 600 MHz and 80 MHz spectra obtained (R2 = 0.97) and showed significantly different ratios for control (n = 28) versus SARS-CoV-2 positive patients (n = 29) (p = 5.2 × 10-8 and 3.7 × 10-8 respectively). Simplification of the sample preparation allows for data acquisition in a similar time frame to high field machines (∼4 min) and a high-throughput version with 1 min experiment time could be feasible. These data show that these newly discovered inflammatory biomarkers can be measured effectively on low field NMR instruments that do not not require housing in a complex laboratory environment, thus lowering the barrier to clinical translation of this diagnostic technology.

Journal article

Begum S, Johnson BZ, Morillon A-C, Yang R, Bong SH, Whiley L, Gray N, Fear VS, Cuttle L, Holland AJA, Nicholson JK, Wood FM, Fear MW, Holmes Eet al., 2022, Systemic long-term metabolic effects of acute non-severe paediatric burn injury, SCIENTIFIC REPORTS, Vol: 12, ISSN: 2045-2322

Journal article

Yeap BB, Marriott RJ, Manning L, Dwivedi G, Hankey GJ, Wu FCW, Nicholson JK, Murray Ket al., 2022, Higher premorbid serum testosterone predicts COVID-19-related mortality risk in men., European Journal of Endocrinology, Vol: 187, Pages: 159-170, ISSN: 0804-4643

Objective: Men are at greater risk from COVID-19 than women. Older, overweight men, and those with type 2 diabetes, have lower testosterone concentrations and poorer COVID-19-related outcomes. We analysed the associations of premorbid serum testosterone concentrations, not confounded by the effects of acute SARS-CoV-2 infection, with COVID-19-related mortality risk in men. Design: This study is a United Kingdom Biobank prospective cohort study of community-dwelling men aged 40-69 years. Methods: Serum total testosterone and sex hormone-binding globulin (SHBG) were measured at baseline (2006-2010). Free testosterone values were calculated (cFT). the incidence of SARS-CoV-2 infections and deaths related to COVID-19 were ascertained from 16 March 2020 to 31 January 2021 and modelled using time-stratified Cox regression. Results: In 159 964 men, there were 5558 SARS-CoV-2 infections and 438 COVID-19 deaths. Younger age, higher BMI, non-White ethnicity, lower educational attainment, and socioeconomic deprivation were associated with incidence of SARS-CoV-2 infections but total testosterone, SHBG, and cFT were not. Adjusting for potential confounders, higher total testosterone was associated with COVID-19-related mortality risk (overall trend P = 0.008; hazard ratios (95% CIs) quintile 1, Q1 vs Q5 (reference), 0.84 (0.65-1.12) Q2:Q5, 0.82 (0.63-1.10); Q3:Q5, 0.80 (0.66-1.00); Q4:Q5, 0.82 (0.75-0.93)). Higher SHBG was also associated with COVID-19 mortality risk (P = 0.008), but cFT was not (P = 0.248). Conclusions: Middle-aged to older men with the highest premorbid serum total testosterone and SHBG concentrations are at greater risk of COVID-19-related mortality. Men could be advised that having relatively high serum testosterone concentrations does not protect against future COVID-19-related mortality. Further investigation of causality and potential underlying mechanisms is warranted.

Journal article

Mujagic Z, Kasapi M, Jonkers DMAE, Garcia Perez I, Vork L, Weerts ZZRM, Serrano Contreras JI, Zhernakova A, Kurilshikov A, Scotcher J, Holmes E, Wijmenga C, Keszthelyi D, Nicholson J, Posma JM, Masclee AAMet al., 2022, Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome, Gut Microbes, Vol: 14, Pages: 1-20, ISSN: 1949-0976

To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS) several modalities of biological and clinical data must be combined. We aimed to identify profiles of faecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Faecal metabolites were measured using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy and gut microbiome using Shotgun Metagenomic Sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HC) with extensive clinical, biological and phenotype information. Data were analysed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve (AUC) of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on faecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavourable stress-response related to gastrointestinal symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.

Journal article

Nicholson JK, Jia W, Lasky-Su JA, Barbas Cet al., 2022, Metabolic Modeling in Health and Disease, JOURNAL OF PROTEOME RESEARCH, Vol: 21, Pages: 559-559, ISSN: 1535-3893

Journal article

Loo RL, Chan Q, Nicholson JK, Holmes Eet al., 2022, Balancing the equation: a natural history of trimethylamine and trimethylamine-N-oxide., Journal of Proteome Research, Vol: 21, Pages: 560-589, ISSN: 1535-3893

Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.

Journal article

Masuda R, Lodge S, Whiley L, Gray N, Lawler N, Nitschke P, Bong S-H, Kimhofer T, Loo RL, Boughton B, Zeng AX, Hall D, Schaefer H, Spraul M, Dwivedi G, Yeap BB, Diercks T, Bernardo-Seisdedos G, Mato JM, Lindon JC, Holmes E, Millet O, Wist J, Nicholson JKet al., 2022, Exploration of Human Serum Lipoprotein Supramolecular Phospholipids Using Statistical Heterospectroscopy in n-Dimensions (SHY-n): Identification of Potential Cardiovascular Risk Biomarkers Related to SARS-CoV-2 Infection., Anal Chem

SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for in

Journal article

Nitschke P, Lodge S, Kimhofer T, Masuda R, Bong S-H, Hall D, Schäfer H, Spraul M, Pompe N, Diercks T, Bernardo-Seisdedos G, Mato JM, Millet O, Susic D, Henry A, El-Omar EM, Holmes E, Lindon JC, Nicholson JK, Wist Jet al., 2022, J-edited dIffusional proton nuclear magnetic resonance spectroscopic measurement of glycoprotein and supramolecular phospholipid biomarkers of inflammation in human serum., Analytical Chemistry, Vol: 94, Pages: 1333-1341, ISSN: 0003-2700

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.

Journal article

Koller KR, Wilson A, Normolle DP, Nicholson JK, Li JV, Kinross J, Lee FR, Flanagan CA, Merculieff ZT, Iyer P, Lammers DL, Thomas TK, O'Keefe SJDet al., 2021, Dietary fibre to reduce colon cancer risk in Alaska Native people: the Alaska FIRST randomised clinical trial protocol., BMJ Open, Vol: 11, Pages: 1-9, ISSN: 2044-6055

INTRODUCTION: Diet, shown to impact colorectal cancer (CRC) risk, is a modifiable environmental factor. Fibre foods fermented by gut microbiota produce metabolites that not only provide food for the colonic epithelium but also exert regulatory effects on colonic mucosal inflammation and proliferation. We describe methods used in a double-blinded, randomised, controlled trial with Alaska Native (AN) people to determine if dietary fibre supplementation can substantially reduce CRC risk among people with the highest reported CRC incidence worldwide. METHODS AND ANALYSES: Eligible patients undergoing routine screening colonoscopy consent to baseline assessments and specimen/data collection (blood, urine, stool, saliva, breath and colon mucosal biopsies) at the time of colonoscopy. Following an 8-week stabilisation period to re-establish normal gut microbiota post colonoscopy, study personnel randomise participants to either a high fibre supplement (resistant starch, n=30) or placebo (digestible starch, n=30) condition, repeating stool sample collection. During the 28-day supplement trial, each participant consumes their usual diet plus their supplement under direct observation. On day 29, participants undergo a flexible sigmoidoscopy to obtain mucosal biopsy samples to measure the effect of the supplement on inflammatory and proliferative biomarkers of cancer risk, with follow-up assessments and data/specimen collection similar to baseline. Secondary outcome measures include the impact of a high fibre supplement on the oral and colonic microbiome and biofluid metabolome. ETHICS AND DISSEMINATION: Approvals were obtained from the Alaska Area and University of Pittsburgh Institutional Review Boards and Alaska Native Tribal Health Consortium and Southcentral Foundation research review bodies. A data safety monitoring board, material transfer agreements and weekly study team meetings provide regular oversight throughout the study. Study findings will first be shared with AN

Journal article

Blaise BJ, Correia GDS, Haggart GA, Surowiec I, Sands C, Lewis MR, Pearce JTM, Trygg J, Nicholson JK, Holmes E, Ebbels TMDet al., 2021, Statistical analysis in metabolic phenotyping, NATURE PROTOCOLS, Vol: 16, Pages: 4299-4326, ISSN: 1754-2189

Journal article

Gray N, Lawler NG, Zeng AX, Ryan M, Bong SH, Boughton BA, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Whiley Let al., 2021, Diagnostic potential of the plasma lipidome in infectious disease: application to acute SARS-CoV-2 infection, Metabolites, Vol: 11, Pages: 1-17, ISSN: 2218-1989

Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography–mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal–Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.

Journal article

Masuda R, Lodge S, Nitschke P, Spraul M, Schaefer H, Bong S-H, Kimhofer T, Hall D, Loo RL, Bizkarguenaga M, Bruzzone C, Gil-Redondo R, Embade N, Mato JM, Holmes E, Wist J, Millet O, Nicholson JKet al., 2021, Integrative Modeling of Plasma Metabolic and Lipoprotein Biomarkers of SARS-CoV-2 Infection in Spanish and Australian COVID-19 Patient Cohorts, JOURNAL OF PROTEOME RESEARCH, Vol: 20, Pages: 4139-4152, ISSN: 1535-3893

Journal article

Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, Hejndorf S, Ng YZ, Low JZY, Rossant J, Nechanitzky R, Holmes E, Nicholson JK, Tan E-K, Matthews PM, Pettersson Set al., 2021, Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor, Proceedings of the National Academy of Sciences, Vol: 118, Pages: 1-10, ISSN: 0027-8424

While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR−/−) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR–mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.

Journal article

Posma JM, Garcia-Perez I, Frost G, Aljuraiban GS, Chan Q, Van Horn L, Daviglus M, Stamler J, Holmes E, Elliott P, Nicholson JKet al., 2021, Nutriome-metabolome relationships provide insights into dietary intake and metabolism (vol 1, pg 426, 2020), NATURE FOOD, Vol: 2, Pages: 541-542

Journal article

Li J, 2021, Roux-en-Y Gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype, Microbiome, Vol: 9, ISSN: 2049-2618

BACKGROUND: Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS: Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS: Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION: Altered bacterial composition and metabolism contribute to metabolic observations in biofluid

Journal article

Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, Ruffieux H, De Sa A, Huhn O, Morgan MD, Gerber PP, Wills MR, Baker S, Calero-Nieto FJ, Doffinger R, Dougan G, Elmer A, Goodfellow IG, Gupta RK, Hosmillo M, Hunter K, Kingston N, Lehner PJ, Matheson NJ, Nicholson JK, Petrunkina AM, Richardson S, Saunders C, Thaventhiran JED, Toonen EJM, Weekes MP, Gottgens B, Toshner M, Hess C, Bradley JR, Lyons PA, Smith KGCet al., 2021, Longitudinal analysis reveals that delayed bystander CD8(+) T cell activation and early immune pathology distinguish severe COVID-19 from mild disease, IMMUNITY, Vol: 54, Pages: 1257-+, ISSN: 1074-7613

Journal article

Kimhofer T, Lodge S, Whiley L, Gray N, Loo RL, Lawler NG, Nitschke P, Bong S-H, Morrison DL, Begum S, Richards T, Yeap BB, Smith C, Smith KGC, Holmes E, Nicholson JKet al., 2021, Correction to "Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection"., J Proteome Res, Vol: 20

Journal article

Holmes E, Wist J, Masuda R, Lodge S, Nitschke P, Kimhofer T, Loo RL, Begum S, Boughton B, Yang R, Morillon A-C, Chin S-T, Hall D, Ryan M, Bong S-H, Gay M, Edgar DW, Lindon JC, Richards T, Yeap BB, Pettersson S, Spraul M, Schaefer H, Lawler NG, Gray N, Whiley L, Nicholson JKet al., 2021, Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome, Journal of Proteome Research, Vol: 20, Pages: 3315-3329, ISSN: 1535-3893

Journal article

Brial F, Chilloux J, Nielsen T, Vieira-Silva S, Falony G, Andrikopoulos P, Olanipekun M, Hoyles L, Djouadi F, Neves AL, Rodriguez-Martinez A, Mouawad GI, Pons N, Forslund S, Le-Chatelier E, Le Lay A, Nicholson J, Hansen T, Hyötyläinen T, Clément K, Oresic M, Bork P, Ehrlich SD, Raes J, Pedersen OB, Gauguier D, Dumas M-Eet al., 2021, Human and preclinical studies of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health., Gut, Vol: 70, Pages: 2105-2114, ISSN: 0017-5749

OBJECTIVE: Gut microbial products are involved in regulation of host metabolism. In human and experimental studies, we explored the potential role of hippurate, a hepatic phase 2 conjugation product of microbial benzoate, as a marker and mediator of metabolic health. DESIGN: In 271 middle-aged non-diabetic Danish individuals, who were stratified on habitual dietary intake, we applied 1H-nuclear magnetic resonance (NMR) spectroscopy of urine samples and shotgun-sequencing-based metagenomics of the gut microbiome to explore links between the urine level of hippurate, measures of the gut microbiome, dietary fat and markers of metabolic health. In mechanistic experiments with chronic subcutaneous infusion of hippurate to high-fat-diet-fed obese mice, we tested for causality between hippurate and metabolic phenotypes. RESULTS: In the human study, we showed that urine hippurate positively associates with microbial gene richness and functional modules for microbial benzoate biosynthetic pathways, one of which is less prevalent in the Bacteroides 2 enterotype compared with Ruminococcaceae or Prevotella enterotypes. Through dietary stratification, we identify a subset of study participants consuming a diet rich in saturated fat in which urine hippurate concentration, independently of gene richness, accounts for links with metabolic health. In the high-fat-fed mice experiments, we demonstrate causality through chronic infusion of hippurate (20 nmol/day) resulting in improved glucose tolerance and enhanced insulin secretion. CONCLUSION: Our human and experimental studies show that a high urine hippurate concentration is a general marker of metabolic health, and in the context of obesity induced by high-fat diets, hippurate contributes to metabolic improvements, highlighting its potential as a mediator of metabolic health.

Journal article

Barker GF, Pechlivanis A, Bello AT, Chrysostomou D, Mullish BH, Marchesi J, Posma JM, Kinross JM, Nicholson J, O'Keefe SJ, Li JVet al., 2021, Aa022 a high-fiber low-fat diet increases fecal levels of lithocholic acid derivative 3-ketocholanic acid, Digestive Disease Week, Publisher: W B SAUNDERS CO-ELSEVIER INC, Pages: S393-S394, ISSN: 0016-5085

Conference paper

Hoyles L, Mayneris-Perxachs J, Cardellini M, Latorre J, Davato F, Moreno-Navarette JM, Arnoriaga-Rodriquez M, Serino M, Abbott J, Barton RH, Puig J, Fernandez-Real X, Ricart W, Tomlinson C, Woodbridge M, Gentileschi P, Butcher SA, Holmes E, Nicholson JK, Perez-Brocal V, Moya A, McClain D, Burcelin R, Dumas M-E, Federici M, Fernandez-Real J-Met al., 2021, ­Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome, Microbiome, Vol: 9, Pages: 1-18, ISSN: 2049-2618

Background: The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear.Results: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The

Journal article

Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, Morillon A-C, Chin S-T, Ryan M, Begum S, Bong SH, Coudert JD, Edgar D, Raby E, Pettersson S, Richards T, Holmes E, Whiley L, Nicholson JKet al., 2021, Systemic perturbations in amine and kynurenine metabolism associated with acute SARS-CoV-2 infection and inflammatory cytokine responses, Journal of Proteome Research, Vol: 20, Pages: 2796-2811, ISSN: 1535-3893

We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer’s ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.

Journal article

Xie G, Wang L, Chen T, Zhou K, Zhang Z, Li J, Sun B, Guo Y, Wang X, Wang Y, Zhang H, Liu P, Nicholson JK, Ge W, Jia Wet al., 2021, A Metabolite Array Technology for Precision Medicine, ANALYTICAL CHEMISTRY, Vol: 93, Pages: 5709-5717, ISSN: 0003-2700

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00168688&limit=30&person=true