Imperial College London

DrJohnPinney

Central FacultyGraduate School

Teaching Fellow- Data Science Skills Leader
 
 
 
//

Contact

 

+44 (0)20 7594 8629j.pinney

 
 
//

Location

 

327Sherfield BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Archer:2008:10.1371/journal.pcbi.1000178,
author = {Archer, J and Pinney, JW and Fan, J and Simon-Loriere, E and Arts, EJ and Negroni, M and Robertson, DL},
doi = {10.1371/journal.pcbi.1000178},
journal = {PLoS Comput Biol},
title = {Identifying the important HIV-1 recombination breakpoints.},
url = {http://dx.doi.org/10.1371/journal.pcbi.1000178},
volume = {4},
year = {2008}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Recombinant HIV-1 genomes contribute significantly to the diversity of variants within the HIV/AIDS pandemic. It is assumed that some of these mosaic genomes may have novel properties that have led to their prevalence, particularly in the case of the circulating recombinant forms (CRFs). In regions of the HIV-1 genome where recombination has a tendency to convey a selective advantage to the virus, we predict that the distribution of breakpoints--the identifiable boundaries that delimit the mosaic structure--will deviate from the underlying null distribution. To test this hypothesis, we generate a probabilistic model of HIV-1 copy-choice recombination and compare the predicted breakpoint distribution to the distribution from the HIV/AIDS pandemic. Across much of the HIV-1 genome, we find that the observed frequencies of inter-subtype recombination are predicted accurately by our model. This observation strongly indicates that in these regions a probabilistic model, dependent on local sequence identity, is sufficient to explain breakpoint locations. In regions where there is a significant over- (either side of the env gene) or under- (short regions within gag, pol, and most of env) representation of breakpoints, we infer natural selection to be influencing the recombination pattern. The paucity of recombination breakpoints within most of the envelope gene indicates that recombinants generated in this region are less likely to be successful. The breakpoints at a higher frequency than predicted by our model are approximately at either side of env, indicating increased selection for these recombinants as a consequence of this region, or at least part of it, having a tendency to be recombined as an entire unit. Our findings thus provide the first clear indication of the existence of a specific portion of the genome that deviates from a probabilistic null model for recombination. This suggests that, despite the wide diversity of recombinant forms seen in the viral populati
AU - Archer,J
AU - Pinney,JW
AU - Fan,J
AU - Simon-Loriere,E
AU - Arts,EJ
AU - Negroni,M
AU - Robertson,DL
DO - 10.1371/journal.pcbi.1000178
PY - 2008///
TI - Identifying the important HIV-1 recombination breakpoints.
T2 - PLoS Comput Biol
UR - http://dx.doi.org/10.1371/journal.pcbi.1000178
UR - http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000178
VL - 4
ER -