Imperial College London

DrJoeriRogelj

Faculty of Natural SciencesThe Grantham Institute for Climate Change

Reader in Climate Science and Policy
 
 
 
//

Contact

 

j.rogelj

 
 
//

Location

 

Sherfield BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

129 results found

Hoepner AGF, Rogelj J, 2021, Emissions estimations should embed a precautionary principle, NATURE CLIMATE CHANGE, ISSN: 1758-678X

Journal article

Gibson M, Slade R, Pereira JP, Rogelj Jet al., 2021, Comparing Mechanisms of Food Choice in an Agent-Based Model of Milk Consumption and Substitution in the UK, JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, Vol: 24, ISSN: 1460-7425

Journal article

Lamboll RD, Jones CD, Skeie RB, Fiedler S, Samset BH, Gillett NP, Rogelj J, Forster PMet al., 2021, Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 14, Pages: 3683-3695, ISSN: 1991-959X

Journal article

Nikas A, Elia A, Boitier B, Koasidis K, Doukas H, Cassetti G, Anger-Kraavi A, Bui H, Campagnolo L, De Miglio R, Delpiazzo E, Fougeyrollas A, Gambhir A, Gargiulo M, Giarola S, Grant N, Hawkes A, Herbst A, Köberle AC, Kolpakov A, Le Mouël P, McWilliams B, Mittal S, Moreno J, Neuner F, Perdana S, Peters GP, Plötz P, Rogelj J, Sognnæs I, Van de Ven D-J, Vielle M, Zachmann G, Zagamé P, Chiodi Aet al., 2021, Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison., Science of the Total Environment, Vol: 793, Pages: 148549-148549, ISSN: 0048-9697

Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.

Journal article

Rogelj J, Schleussner C-F, 2021, Reply to Comment on 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level', ENVIRONMENTAL RESEARCH LETTERS, Vol: 16, ISSN: 1748-9326

Journal article

Nicholls Z, Meinshausen M, Lewis J, Corradi MR, Dorheim K, Gasser T, Gieseke R, Hope AP, Leach NJ, McBride LA, Quilcaille Y, Rogelj J, Salawitch RJ, Samset BH, Sandstad M, Shiklomanov A, Skeie RB, Smith CJ, Smith SJ, Su X, Tsutsui J, Vega-Westhoff B, Woodard DLet al., 2021, Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections, EARTHS FUTURE, Vol: 9

Journal article

Grassi G, Stehfest E, Rogelj J, van Vuuren D, Cescatti A, House J, Nabuurs G-J, Rossi S, Alkama R, Viñas RA, Calvin K, Ceccherini G, Federici S, Fujimori S, Gusti M, Hasegawa T, Havlik P, Humpenöder F, Korosuo A, Perugini L, Tubiello FN, Popp Aet al., 2021, Critical adjustment of land mitigation pathways for assessing countries’ climate progress, Nature Climate Change, Vol: 11, Pages: 425-434, ISSN: 1758-678X

Mitigation pathways by Integrated Assessment Models (IAMs) describe future emissions that keep global warming below specific temperature limits and are compared with countries’ collective greenhouse gas (GHG) emission reduction pledges. This is needed to assess mitigation progress and inform emission targets under the Paris Agreement. Currently, however, a mismatch of ~5.5 GtCO2 yr−1 exists between the global land-use fluxes estimated with IAMs and from countries’ GHG inventories. Here we present a ‘Rosetta stone’ adjustment to translate IAMs’ land-use mitigation pathways to estimates more comparable with GHG inventories. This does not change the original decarbonization pathways, but reallocates part of the land sink to be consistent with GHG inventories. Adjusted cumulative emissions over the period until net zero for 1.5 or 2 °C limits are reduced by 120–192 GtCO2 relative to the original IAM pathways. These differences should be taken into account to ensure an accurate assessment of progress towards the Paris Agreement.

Journal article

Jones CD, Hickman JE, Rumbold ST, Walton J, Lamboll RD, Skeie RB, Fiedler S, Forster PM, Rogelj J, Abe M, Botzet M, Calvin K, Cassou C, Cole JNS, Davini P, Deushi M, Dix M, Fyfe JC, Gillett NP, Ilyina T, Kawamiya M, Kelley M, Kharin S, Koshiro T, Li H, Mackallah C, Mueller WA, Nabat P, van Noije T, Nolan P, Ohgaito R, Olivie D, Oshima N, Parodi J, Reerink TJ, Ren L, Romanou A, Seferian R, Tang Y, Timmreck C, Tjiputra J, Tourigny E, Tsigaridis K, Wang H, Wu M, Wyser K, Yang S, Yang Y, Ziehn Tet al., 2021, The Climate Response to Emissions Reductions Due to COVID-19: Initial Results From CovidMIP, GEOPHYSICAL RESEARCH LETTERS, Vol: 48, ISSN: 0094-8276

Journal article

Rogelj J, Geden O, Cowie A, Reisinger Aet al., 2021, Net-zero emissions targets are vague: three ways to fix, Nature, Vol: 591, Pages: 365-368, ISSN: 0028-0836

Journal article

Matthews HD, Tokarska KB, Rogelj J, Smith CJ, MacDougall AH, Haustein K, Mengis N, Sippel S, Forster PM, Knutti Ret al., 2021, An integrated approach to quantifying uncertainties in the remaining carbon budget, Communications Earth & Environment, Vol: 2, Pages: 1-11, ISSN: 2662-4435

The remaining carbon budget quantifies the future CO2 emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2 Emissions (TCRE), as well as to non-CO2 climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2 emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2 from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2 emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.

Journal article

Matthews HD, Tokarska KB, Nicholls ZRJ, Rogelj J, Canadell JG, Friedlingstein P, Frolicher TL, Forster PM, Gillett NP, Ilyina T, Jackson RB, Jones CD, Koven C, Knutti R, MacDougall AH, Meinshausen M, Mengis N, Seferian R, Zickfeld Ket al., 2020, Opportunities and challenges in using remaining carbon budgets to guide climate policy, NATURE GEOSCIENCE, Vol: 13, Pages: 769-779, ISSN: 1752-0894

Journal article

Gibson MF, Rao ND, Slade RB, Pereira JP, Rogelj Jet al., 2020, The role of energy in mitigating grain storage losses in India and the impact for nutrition, Resources, Conservation and Recycling, Vol: 163, ISSN: 0921-3449

Globally, India's population is amongst the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost along the supply chain before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. This study quantifies energy input to minimise storage losses across India, responsible for up to a quarter of grain losses. In doing so, we explore links between three Sustainable Development Goals-SDG2, SDG7, and SDG12-, and provide insight for development of joined up agriculture and health policy in the country. Focusing on rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favourable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses, and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates that maize has the highest energy input intensity for storage, at 110 (18) kWh per tonne of grain (kWh/t), and wheat the lowest, at 72 (14) kWh/t. This energy cost represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India's nutritionally deficient population, average protein deficiency could reduce by 46±4%, calorie by 27±2%, zinc by 26±2% and iron by 11±1%.

Journal article

Lamboll RD, Nicholls ZRJ, Kikstra JS, Meinshausen M, Rogelj Jet al., 2020, Silicone v1.0.0: an open-source Python package for inferring missing emissions data for climate change research, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 13, Pages: 5259-5275, ISSN: 1991-959X

Journal article

Graven H, Keeling RF, Rogelj J, 2020, Changes to Carbon Isotopes in Atmospheric CO2 Over the Industrial Era and Into the Future, GLOBAL BIOGEOCHEMICAL CYCLES, Vol: 34, ISSN: 0886-6236

Journal article

Nicholls ZRJ, Meinshausen M, Lewis J, Gieseke R, Dommenget D, Dorheim K, Fan C-S, Fuglestvedt JS, Gasser T, Goluke U, Goodwin P, Hartin C, Hope AP, Kriegler E, Leach NJ, Marchegiani D, McBride LA, Quilcaille Y, Rogelj J, Salawitch RJ, Samset BH, Sandstad M, Shiklomanov AN, Skeie RB, Smith CJ, Smith S, Tanaka K, Tsutsui J, Xie Zet al., 2020, Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response, GEOSCIENTIFIC MODEL DEVELOPMENT, Vol: 13, Pages: 5175-5190, ISSN: 1991-959X

Journal article

Andrijevic M, Schleussner C-F, Gidden MJ, McCollum DL, Rogelj Jet al., 2020, COVID-19 recovery funds dwarf clean energy investment needs., Science, Vol: 370, Pages: 298-300, ISSN: 1095-9203

Journal article

Tokarska KB, Arora VK, Gillett NP, Lehner F, Rogelj J, Schleussner C-F, Séférian R, Knutti Ret al., 2020, Uncertainty in carbon budget estimates due to internal climate variability, Environmental Research Letters, Vol: 15, Pages: 1-12, ISSN: 1748-9326

Remaining carbon budget specifies the cap on global cumulative CO2 emissions from the present-day onwards that would be in line with limiting global warming to a specific maximum level. In the context of the Paris Agreement, global warming is usually interpreted as the externally-forced response to anthropogenic activities and emissions, but it excludes the natural fluctuations of the climate system known as internal variability. A remaining carbon budget can be calculated from an estimate of the anthropogenic warming to date, and either (i) the ratio of CO2-induced warming to cumulative emissions, known as the Transient Climate Response to Emissions (TCRE), in addition to information on the temperature response to the future evolution of non-CO2 emissions; or (ii) climate model scenario simulations that reach a given temperature threshold. Here we quantify the impact of internal variability on the carbon budgets consistent with the Paris Agreement derived using either approach, and on the TCRE diagnosed from individual models. Our results show that internal variability contributes approximately ±0.09 °C to the overall uncertainty range of the human-induced warming to-date, leading to a spread in the remaining carbon budgets as large as ±50 PgC, when using approach (i). Differences in diagnosed TCRE due to internal variability in individual models can be as large as ±0.1 °C/1000 PgC (5%–95% range). Alternatively, spread in the remaining carbon budgets calculated from (ii) using future concentration-driven simulations of large ensembles of CMIP6 and CMIP5 models is estimated at ±30 PgC and ±40 PgC (5%–95% range). These results are important for model evaluation and imply that caution is needed when interpreting small remaining budgets in policy discussions. We do not question the validity of a carbon budget approach in determining mitigation requirements. However, due to intrinsic uncertainty arising from interna

Journal article

Andrijevic M, Schleussner C-F, Gidden MJ, McCollum DL, Kim J, Yesil B, Lee K, Rogelj Jet al., 2020, climate-analytics/covid_recovery: Data and analysis scripts

This is the (final) version of the code for Andrijevic et al. 2020, "COVID-19 recovery funds dwarf clean energy investment needs"Built on v1.0 with a bit of spring cleaning

Software

Smith SJ, Chateau J, Dorheim K, Drouet L, Durand-Lasserve O, Fricko O, Fujimori S, Hanaoka T, Harmsen M, Hilaire J, Keramidas K, Klimont Z, Luderer G, Moura MCP, Riahi K, Rogelj J, Sano F, van Vuuren DP, Wada Ket al., 2020, Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis, Climatic Change, Vol: 163, Pages: 1427-1442, ISSN: 0165-0009

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame.

Journal article

Fofrich R, Tong D, Calvin K, De Boer HS, Emmerling J, Fricko O, Fujimori S, Luderer G, Rogelj J, Davis SJet al., 2020, Early retirement of power plants in climate mitigation scenarios, Environmental Research Letters, Vol: 15, Pages: 1-12, ISSN: 1748-9326

International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.

Journal article

Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, Lamboll RD, Quere CL, Rogelj J, Rosen D, Schleussner C-F, Richardson TB, Smith CJ, Turnock STet al., 2020, Current and future global climate impacts resulting from COVID-19 (vol 82, pg 613, 2020), Nature Climate Change, Vol: 10, Pages: 971-971, ISSN: 1758-678X

Journal article

Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, Lamboll RD, Quere CL, Rogelj J, Rosen D, Schleussner C-F, Richardson TB, Smith CJ, Turnock STet al., 2020, Current and future global climate impacts resulting from COVID-19, Nature Climate Change, Vol: 10, Pages: 913-919, ISSN: 1758-678X

The global response to the COVID-19 pandemic has led to a sudden reduction of both GHG emissions and air pollutants. Here, using national mobility data, we estimate global emission reductions for ten species during the period February to June 2020. We estimate that global NOx emissions declined by as much as 30% in April, contributing a short-term cooling since the start of the year. This cooling trend is offset by ~20% reduction in global SO2 emissions that weakens the aerosol cooling effect, causing short-term warming. As a result, we estimate that the direct effect of the pandemic-driven response will be negligible, with a cooling of around 0.01 ± 0.005 °C by 2030 compared to a baseline scenario that follows current national policies. In contrast, with an economic recovery tilted towards green stimulus and reductions in fossil fuel investments, it is possible to avoid future warming of 0.3 °C by 2050.

Journal article

MacDougall AH, Frölicher TL, Jones CD, Rogelj J, Matthews HD, Zickfeld K, Arora VK, Barrett NJ, Brovkin V, Burger FA, Eby M, Eliseev AV, Hajima T, Holden PB, Jeltsch-Thömmes A, Koven C, Mengis N, Menviel L, Michou M, Mokhov II, Oka A, Schwinger J, Séférian R, Shaffer G, Sokolov A, Tachiiri K, Tjiputra J, Wiltshire A, Ziehn Tet al., 2020, Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2, Biogeosciences, Vol: 17, Pages: 2987-3016, ISSN: 1726-4170

The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potential magnitude and sign of ZEC, in addition to the processes that underlie this metric. A total of 18 Earth system models of both full and intermediate complexity participated in ZECMIP. All models conducted an experiment where atmospheric CO2 concentration increases exponentially until 1000 PgC has been emitted. Thereafter emissions are set to zero and models are configured to allow free evolution of atmospheric CO2 concentration. Many models conducted additional second-priority simulations with different cumulative emission totals and an alternative idealized emissions pathway with a gradual transition to zero emissions. The inter-model range of ZEC 50 years after emissions cease for the 1000 PgC experiment is −0.36 to 0.29 ∘C, with a model ensemble mean of −0.07 ∘C, median of −0.05 ∘C, and standard deviation of 0.19 ∘C. Models exhibit a wide variety of behaviours after emissions cease, with some models continuing to warm for decades to millennia and others cooling substantially. Analysis shows that both the carbon uptake by the ocean and the terrestrial biosphere are important for counteracting the warming effect from the reduction in ocean heat uptake in the decades after emissions cease. This warming effect is difficult to constrain due to high uncertainty in the efficacy of ocean heat uptake. Overall, the most likely value of ZEC on multi-decadal timescales is close to zero, consistent with previous model experiments and simple theory.

Journal article

Pfleiderer P, Schleussner C-F, Mengel M, Rogelj Jet al., 2020, global mean temperature indicators linked to warming levels avoiding climate risks (vol 13, 064015, 2018), Environmental Research Letters, Vol: 15, Pages: 1-1, ISSN: 1748-9326

Journal article

Rogelj J, Forster PM, Kriegler E, Smith CJ, Seferian Ret al., 2020, Estimating and tracking the remaining carbon budget for stringent climate targets (vol 571, pg 335, 2019), Nature, Vol: 580, ISSN: 0028-0836

Correction to: Nature https://doi.org/10.1038/s41586-019-1368-z Published online 17 July 2019

Journal article

Duan H, Rogelj J, Veysey J, Wang Set al., 2020, Modeling deep decarbonization: Robust energy policy and climate action, Applied Energy, Vol: 262, Pages: 1-3, ISSN: 0306-2619

Journal article

Höhne N, den Elzen M, Rogelj J, Metz B, Fransen T, Kuramochi T, Olhoff A, Alcamo J, Winkler H, Fu S, Schaeffer M, Schaeffer R, Peters GP, Maxwell S, Dubash NKet al., 2020, Emissions: world has four times the work or one-third of the time., Nature, Vol: 579, Pages: 25-28, ISSN: 0028-0836

Journal article

McCollum DL, Gambhir A, Rogelj J, Wilson Cet al., 2020, Energy modellers should explore extremes more systematically in scenarios, Nature Energy, Vol: 5, Pages: 104-107, ISSN: 2058-7546

Journal article

Tokarska KB, Zickfeld K, Rogelj J, 2019, Path independence of carbon budgets when meeting a stringent global mean temperature target after an overshoot, Earths Future, Vol: 7, Pages: 1283-1295, ISSN: 2328-4277

Emission pathways that are consistent with meeting the Paris Agreement goal of holding global mean temperature rise well below 2 °C often assume a temperature overshoot. In such overshoot scenarios, a given temperature limit is first exceeded and later returned to, under the assumption of large‐scale deliberate carbon dioxide removal from the atmosphere. Here we show that although such strategy might result in a reversal of global mean temperature, the carbon cycle exhibits path dependence. After an overshoot, more carbon is stored in the ocean and less on land compared to a scenario with the same cumulative CO2 emissions but no overshoot. The near‐path independence of surface air temperature arises despite the path dependence in the carbon cycle, as it is offset by path dependence in the thermal response of the ocean. Such behavior has important implications for carbon budgets (i.e. the total amount of CO2 emissions consistent with holding warming to a given level), which do not differ much among scenarios that entail different levels of overshoot. Therefore, the concept of a carbon budget remains robust for scenarios with low levels of overshoot (up to 300 Pg C overshoot considered here) but should be used with caution for higher levels of overshoot, particularly for limiting the environmental change in dimensions other than global mean temperature rise.

Journal article

Schleussner C-F, Nauels A, Schaeffer M, Hare W, Rogelj Jet al., 2019, Inconsistencies when applying novel metrics for emissions accounting to the Paris agreement, Environmental Research Letters, Vol: 14, ISSN: 1748-9326

Addressing emissions of non-CO2 greenhouse gases (GHGs) is an integral part of efficient climate change mitigation and therefore an essential part of climate policy. Metrics are used to aggregate and compare emissions of short- and long-lived GHGs and need to account for the difference in both magnitude and persistence of their climatic effects. Different metrics describe different approaches and perspectives, and hence yield different numerical estimates for aggregated GHG emissions. When interpreting GHG emission reduction targets, being mindful of the underlying metrical choices thus proves to be essential. Here we present the impact a recently proposed GHG metric related to the concept of CO2 forcing-equivalent emissions (called GWP*) would have on the internal consistency and environmental integrity of the Paris Agreement. We show that interpreting the Paris Agreement goals in a metric like GWP* that is significantly different from the standard metric used in the IPCC Fifth Assessment Report can lead to profound inconsistencies in the mitigation architecture of the Agreement. It could even undermine the integrity of the Agreement's mitigation target altogether by failing to deliver net-zero CO2 emissions and therewith failing to ensure warming is halted. Our results indicate that great care needs to be taken when applying new concepts that appear scientifically favourable to a pre-existing climate policy context.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00949549&limit=30&person=true