Publications
53 results found
Nunes LA, Turvey ST, Rosindell J, 2015, The price of conserving avian phylogenetic diversity: a global prioritization approach, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 370, ISSN: 0962-8436
- Author Web Link
- Open Access Link
- Cite
- Citations: 16
Warren BH, Simberloff D, Ricklefs RE, et al., 2015, Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson, ECOLOGY LETTERS, Vol: 18, Pages: 200-217, ISSN: 1461-023X
- Author Web Link
- Cite
- Citations: 266
Rosindell J, Cornell SJ, 2013, Universal scaling of species-abundance distributions across multiple scales, OIKOS, Vol: 122, Pages: 1101-1111, ISSN: 0030-1299
- Author Web Link
- Cite
- Citations: 23
Rosindell J, Harmon LJ, 2013, A unified model of species immigration, extinction and abundance on islands, JOURNAL OF BIOGEOGRAPHY, Vol: 40, Pages: 1107-1118, ISSN: 0305-0270
- Author Web Link
- Cite
- Citations: 34
Rosindell J, Harmon LJ, 2012, OneZoom: A Fractal Explorer for the Tree of Life, PLOS BIOLOGY, Vol: 10, ISSN: 1545-7885
- Author Web Link
- Open Access Link
- Cite
- Citations: 47
Wennekes PL, Rosindell J, Etienne RS, 2012, The Neutral-Niche Debate: A Philosophical Perspective, ACTA BIOTHEORETICA, Vol: 60, Pages: 257-271, ISSN: 0001-5342
- Author Web Link
- Cite
- Citations: 51
Etienne RS, Rosindell J, 2012, Comment on "Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality", SCIENCE, Vol: 336, ISSN: 0036-8075
- Author Web Link
- Cite
- Citations: 7
Etienne RS, de Visser SN, Janzen T, et al., 2012, Can clade age alone explain the relationship between body size and diversity?, INTERFACE FOCUS, Vol: 2, Pages: 170-179, ISSN: 2042-8898
- Author Web Link
- Cite
- Citations: 16
Rosindell J, Hubbell SP, He F, et al., 2012, The case for ecological neutral theory, TRENDS IN ECOLOGY & EVOLUTION, Vol: 27, Pages: 203-208, ISSN: 0169-5347
- Author Web Link
- Cite
- Citations: 195
Desjardins-Proulx P, Rosindell JL, Poisot T, et al., 2012, A simple model to study phylogeographies and speciation patterns in space
In this working paper, we present a simple theoretical framework based onnetwork theory to study how speciation, the process by which new speciesappear, shapes spatial patterns of diversity. We show that this framework canbe expanded to account for different types of networks and interactions, andincorporates different modes of speciation.
Etienne RS, Rosindell J, 2012, Prolonging the Past Counteracts the Pull of the Present: Protracted Speciation Can Explain Observed Slowdowns in Diversification, SYSTEMATIC BIOLOGY, Vol: 61, Pages: 204-213, ISSN: 1063-5157
- Author Web Link
- Open Access Link
- Cite
- Citations: 127
Rosindell J, Jansen PA, Etienne RS, 2012, Age structure in neutral theory resolves inconsistencies related to reproductive-size threshold, Journal of Plant Ecology, Vol: 5, Pages: 64-71
AimsNeutral theory consists of a suite of models that assume ecological equivalence among individual organisms. They have been most commonly applied to tropical forest tree communities either as null models or as approximations. Neutral models typically only include reproductive adults; therefore, fitting to empirical tree community data requires defining a reproductive-size threshold, which for trees is usually set arbitrarily to a diameter at breast height (DBH) of 100 mm. The inevitable exclusion of some reproductive adults and inclusion of some saplings cause a non-random sampling bias in neutral model fits. Here, we investigate this problem and resolve it by introducing simple age structure into a neutral model.MethodsWe compared the performance and sensitivity of DBH threshold of three variants of a spatially explicit neutral model: the traditional model, a model incorporating random sampling and a model with two distinct age classes—reproductive adults and saplings. In the age-structured model, saplings are offspring from adults that disperse according to a Gaussian dispersal kernel around the adults. The only extra parameter is the ratio of adults to saplings, which is not a free parameter but directly measurable. We used species–area relation- ships (SARs) to explore the predicted effect of saplings on the species richness at different scales in our model. We then evaluated the three model variations to find the parameters required to maintain the ob- served level of species richness in the 50-ha plot on Barro Colorado Island (BCI). We repeated our analysis filtering the data at differentINTRODUCTIONNeutral theory refers to a collection of neutral models each as- suming ecological equivalence between individuals (Bellminimum tree-size thresholds in order to find the effect this threshold has on our results. Lastly, we used empirical species–individual rela- tionships (SIRs) to test the pre-existing hypothesis that environmental filtering i
McInnes L, Baker WJ, Barraclough TG, et al., 2011, Integrating ecology into macroevolutionary research, BIOLOGY LETTERS, Vol: 7, Pages: 644-646, ISSN: 1744-9561
- Author Web Link
- Cite
- Citations: 10
Rosindell J, Hubbell SP, Etienne RS, 2011, The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten, TRENDS IN ECOLOGY & EVOLUTION, Vol: 26, Pages: 340-348, ISSN: 0169-5347
- Author Web Link
- Cite
- Citations: 398
Rosindell J, Phillimore AB, 2011, A unified model of island biogeography sheds light on the zone of radiation, ECOLOGY LETTERS, Vol: 14, Pages: 552-560, ISSN: 1461-023X
- Author Web Link
- Open Access Link
- Cite
- Citations: 150
Etienne RS, Rosindell J, 2011, The Spatial Limitations of Current Neutral Models of Biodiversity, PLOS ONE, Vol: 6, ISSN: 1932-6203
- Author Web Link
- Cite
- Citations: 29
Keil P, Herben T, Rosindell J, et al., 2010, Predictions of Taylor's power law, density dependence and pink noise from a neutrally modeled time series, JOURNAL OF THEORETICAL BIOLOGY, Vol: 265, Pages: 78-86, ISSN: 0022-5193
- Author Web Link
- Cite
- Citations: 16
Kurka P, Sizling AL, Rosindell J, 2010, Analytical evidence for scale-invariance in the shape of species abundance distributions, MATHEMATICAL BIOSCIENCES, Vol: 223, Pages: 151-159, ISSN: 0025-5564
- Author Web Link
- Cite
- Citations: 16
Rosindell J, Cornell SJ, Hubbell SP, et al., 2010, Protracted speciation revitalizes the neutral theory of biodiversity, Ecology Letters, Pages: 716-727
Understanding the maintenance and origin of biodiversity is a formidable task, yet many ubiquitous ecological patterns are predicted by a surprisingly simple and widely studied neutral model that ignores functional differences between species. However, this model assumes that new species arise instantaneously as singletons and consequently makes unrealistic predictions about species lifetimes, speciation rates and number of rare species. Here, we resolve these anomalies – without compromising any of the original model’s existing achievements and retaining computational and analytical tractability – by modelling speciation as a gradual, protracted, process rather than an instantaneous event. Our model also makes new predictions about the diversity of ÔincipientÕ species and rare species in the metacommunity. We show that it is both necessary and straightforward to incorporate protracted speciation in future studies of neutral models, and argue that non- neutral models should also model speciation as a gradual process rather than an instantaneous one.
Leigh EG, Rosindell J, Etienne RS, 2010, Unified neutral theory of biodiversity and biogeography, Scholarpedia, Vol: 5
Rosindell J, Cornell SJ, 2009, Species-area curves, neutral models, and long-distance dispersal, ECOLOGY, Vol: 90, Pages: 1743-1750, ISSN: 0012-9658
- Author Web Link
- Cite
- Citations: 75
Rosindell J, Wong Y, Etienne RS, 2008, A coalescence approach to spatial neutral ecology, Ecological Informatics, Vol: 3, Pages: 259-271
Neutral models in ecology have attracted much attention in recent literature. They can provide considerable insight into the roles of non-species-specific factors (e.g. stochasticity, dispersal, speciation) on community dynamics but often require intensive simulations, particularly in spatial settings. Here, we clearly explain existing techniques for modelling spatially explicit neutral processes in ecology using coalescence. Furthermore, we present several novel extensions to these methods including procedures for dealing with system boundaries which enable improved investigation of the effects of dispersal. We also present a semi-analytical algorithm that calculates the expected species richness in a sample, for any speciation rate. By eliminating the effect of stochasticity in the speciation process, we reduce the variance in estimates of species richness. Our benchmarks show that the combination of existing coalescence theory and our extensions produces higher quality results in vastly shorter time scales than previously possible: years of simulation time are reduced to minutes. As an example application, we find parameters for a spatially explicit neutral model to approximate the species richness of a tropical forest dataset.
Rosindell J, Cornell SJ, 2007, Species-area relationships from a spatially explicit neutral model in an infinite landscape, ECOLOGY LETTERS, Vol: 10, Pages: 586-595, ISSN: 1461-023X
- Author Web Link
- Cite
- Citations: 121
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.