Imperial College London

Jörg Schumacher

Faculty of Natural SciencesDepartment of Life Sciences

Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 5366j.schumacher

 
 
//

Location

 

435Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Summary

I am interested in how bacteria interact with plants. My group uses mainly synthetic and systems biology approaches both on ex planta and in planta model systems to better understand how molecular mechanisms impact on overall systems behaviour. Research activities span from molecular mechanisms that underpin bacterial system behaviour, to predictably alter their  behaviour in plant environments. We study bacterial traits that are either detrimental or beneficial to plants and crops. For example, we work with Pseudomonas syringae that triggers plant pathogenicity and Klebsiella oxytoca  that can fix atmospheric nitrogen that can provide nitrogen biofertilisers to crops. Among others, I am leading the systems and synthetic biology aspects of our strategic LoLa award to engineer nitrogen fixing bacteria to reduce our dependency on chemically produced nitrogen fertilisers (RCUK: BB/N003608/1).

Publications

Journals

Sharma S, Gang S, Schumacher J, et al., 2021, Genomic appraisal of Klebsiella PGPB isolated from soil to enhance the growth of barley, Genes & Genomics, ISSN:1976-9571

Gang S, Sharma S, Saraf M, et al., 2021, Bacterial indole-3-acetic acid influences soil nitrogen acquisition in barley and chickpea, Plants, Vol:10, ISSN:2223-7747

Varghese F, Kabasakal BV, Cotton CA, et al., 2019, A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii, Journal of Biological Chemistry, Vol:294, ISSN:0021-9258, Pages:9367-9376

Gang S, Sharma S, Saraf M, et al., 2019, Analysis of Indole-3-acetic Acid (IAA) Production in Klebsiella by LC-MS/MS and the Salkowski Method, Bio-protocol, Vol:9

Conference

Schumacher J, Waite C, Wang B, Synthetic transcription factors allowtuneable synthetic control of the complex bacterial nor regulon, EMBO: Creating is Understanding: Synthetic Biology Masters Complexity

More Publications