Imperial College London

Jörg Schumacher

Faculty of Natural SciencesDepartment of Life Sciences

Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 5366j.schumacher

 
 
//

Location

 

435Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Overview

Bacteria adapt their physiology to environmental changes, through coordinated changes of gene transcription patterns and post translational modifications that entail metabolic adaptations. My group investigates the biochemical and cell signaling events underpinning such cellular adaptations in plant-microbe environments. In particular, we study plant associative nitrogen fixing bacteria such as Klebsiella oxytoca as plant nitrogen bio-fertilisers and Pseudomonas syringae as plant pathogen model. Apart from conventional in vitro and in vitro methods, we use synthetic and systems (-omics) biology approaches to tackle current fundamental challenges associated with the complexity of plant-microbe systems and apply this knowledge for systems metabolic engineering.


 

Synthetic Transcription Factors


Gaining orthogonal transcription control of large gene clusters or regulons remains a major challenge in synthetic biology, due to the complexity and workload of the engineering a multitude of transcription units and transcription control elements (promoters, UTRs, rbs, ...).An alternative approach is to design and engineer synthetic master regulators that can act simultaneously on many transcription units, but that are uncoupled from the native physiological signalling inputs.  We have engineered such synthetic transcription factors that control the large nitrogen assimilation regulon (48 genes) and the nitrogen fixation regulon 18 genes) in Klebsiella oxytoca, with the aim to enhance their diazotrophic crop bio-fertilisation capacity using metabolic engineering approaches. These synthetic proteins are also valuable tools in studying system behaviour, for instance to identify control level hierarchies and network cross talk.

Experimental and integrative systems biology


Advances in methodologies have always driven the discovery of novel aspects and concepts in biological sciences. My group has developed RNAseq transcriptomics, multiple reaction monitoring  MS proteomics and RNA-FISH to obtain quantitative ensemble data of transcripts, proteins and their distribution within bacterial populations (physiological heterogeneity).  For example, multiple-reaction-monitoring (MRM) MS is applied to gain a more quantitative insights into the systems behaviour of  regulatory networks allowing us to measure how the quantities of regulatory proteins change over time under varying conditions and monitor what post-translational modifications occur, as well as determining to what extend targeted proteins are expressed. For instance, the nitrogen status in the cell is sensed at various levels, largely through the key regulatory proteins PII and GlnK through uridylilation, which impact on NtrC activity to activate the glnk and other genes, and also act on the central nitrogen assimilatory enzyme glutamine synthetase by controlling its adenylation state. MRM-MS allows unravelling the time resolved protein adaptation response to a changing environment and we model such adaptation processes in collaboration with Profs. Michael Stumpf and Mauricio Barahona.  The EBP pair HrpR-HrpS is unusual in that these close paralogues, are strictly co-dependent, raising questions about their potential benefit. HrpR-HrpS control genes that are required for plant infection and appear to be a defining feature of P. syringae pathogens (Fig 2). Pseudomonas syringae are important pathogens of agriculturally important crops, including tomato, rice, bean and kiwi.  We employ MRM-MS to investigate how regulatory proteins upstream of the HrpR-HrpS regulatory cascade change under infectious conditions to better understand what triggers the infectious cycle in vitro and in planta.

 

Phylogenetic tree of HrpR/HrpSFigure 2: Phylogenetic tree of HrpR/HrpS, indicating that the dual system is specific to Pseudomonas syringae plant pathogens compared to other pathogens with singly acting HrpS, adopted from: Jovanovic, M., James, E. H., Burrows, P. C., Rego, F. G., Buck, M., and Schumacher, J. (2011) Regulation of the co-evolved HrpR and HrpS AAA proteins required for Pseudomonas syringae pathogenicity, Nat Commun 2, 177.

Publications

show research

Gang S, Saraf M, Waite C, et al. Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant & Soil 2017;. in pres

Waite C, Schumacher J, Jovanovic M, et al. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae. mBio 2017;8(1) doi: 10.1128/mBio.02273-16 [published Online First: 2017/01/26]

Gosztolai A, Schumacher J, Behrends V, et al. GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation. Biophys J 2017;112(10):2219-30. doi: 10.1016/j.bpj.2017.04.012 [published Online First: 2017/05/26]

Schumacher J. Native and synthetic gene regulation during adaptation to nitrogen limitation stress. In: Bruijn FJD, ed. Environmental Control of Gene Expression and Adaptation in Bacteria. 1st ed: Blackwell/ Wiley 2016:24.

Bonato P, Alves LR, Osaki JH, et al. The NtrY-NtrX two-component system is involved in controlling nitrate assimilation in Herbaspirillum seropedicae strain SmR1. The FEBS journal 2016;283(21):3919-30. doi: 10.1111/febs.13897 [published Online First: 2016/09/17]

Komorowski, Schumacher J, Behrends V, et al. Analog nitrogen sensing in Escherichia coli enables high fidelity information processing2015. doi: https://doi.org/10.1101/015792. In preparation for Proteomics.

Buck M, Engl C, Joly N, et al. In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription. Methods Mol Biol 2015;1276:53-79. doi: 10.1007/978-1-4939-2392-2_4 [published Online First: 2015/02/11]

Wang BB, M.; Buck, M.; Schumacher, J. Synthetic transcription factors allow regulon wide control and shifting the Nitrogen/Carbon balance in bacteria. New biotechnology 2014;31:S22-S22.

Paloma Bonato; Lysangela R. Alves; Juliana H. Osaki; Liu Un Rigo; Fabio O. Pedrosa; Emanuel M. Souza; Nan Zhang, Jörg Schumacher, Martin Buck; Roseli Wassem; Leda S. Chubatsu. (2016). The NtrY/NtrX two-component system controls nitrate metabolism in Herbaspirillum seropedicae SmR1. The FEBS Journal 283(21):3919-3930.

Schumacher, J. $ (2016) Native and synthetic gene regulation during adaptation to nitrogen limitation stress, In Environmental Control of Gene Expression and Adaptation in Bacteria. (Bruijn, F. J. D., Ed.) 1st ed., p 24, Blackwell/ Wiley. ISBN: 9781119004882

Buck, M., Engl, C., Joly, N., Jovanovic, G., Jovanovic, M., Lawton, E., McDonald, C., Schumacher, J., Waite, C., and Zhang, N. (2015) In vitro and in vivo methodologies for studying the sigma 54-dependent transcription, Methods Mol Biol 1276, 53-79.

Wang, B. B., M.; Buck, M.; Schumacher, J.$ (2014) Synthetic transcription factors allow regulon wide control and shifting the Nitrogen/Carbon balance in bacteria. NEW BIOTECHNOLOGY, Vol: 31, Pages: S22-S22, ISSN: 1871-6784.

Jovanovic, M., Lawton, E., Schumacher, J., and Buck, M. (2014). Interplay among Pseudomonas syringae HrpR, HrpS and HrpV proteins for regulation of the type III secretion system. FEMS Microbiol Lett 356, 201-211.

Schumacher, J. $€ , Waite, C.J., Bennett, M.H., Perez, M.F., Shethi, K., and Buck, M. (2014). Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Frontiers in plant science 5, 242.

Wang, B., Barahona, M., Buck, M., and Schumacher, J. $€  (2013) Rewiring cell signalling through chimaeric regulatory protein engineering, Biochem Soc Trans 41, 1195-1200.

Schumacher, J. $€ , Behrends, V., Pan, Z., Brown, D. R., Heydenreich, F., Lewis, M. R., Bennett, M. H., Razzaghi, B., Komorowski, M., Barahona, M., Stumpf, M. P., Wigneshweraraj, S., Bundy, J. G., and Buck, M. (2013) Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo, mBio 4, e00881-00813.

Rainey P and Zhang X: F1000Prime Recommendation of [Schumacher J et al., MBio 2013, 4(6):e00881-13]. In F1000Prime, 14 Jan 2014; DOI: 10.3410/f.718181806.793489422.

Dixon R: F1000Prime Recommendation of [Schumacher J et al., MBio 2013, 4(6):e00881-13]. In F1000Prime, 07 Apr 2014; DOI: 10.3410/f.718181806.793489438.

Galvao, C. W., Souza, E. M., Etto, R. M., Pedrosa, F. O., Chubatsu, L. S., Yates, M. G., Schumacher, J., Buck, M., and Steffens, M. B. (2012) The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae, Brazilian journal of medical and biological research, 45, 1127-1134.

Jovanovic, M., James, E. H., Burrows, P. C., Rego, F. G. M., Buck, M., and Schumacher, J. $€  (2010) Regulation of the co-evolved HrpR and HrpS AAA proteins required for Pseudomonas syringae pathogenicity Nature Commun.2, 177.

Burrows, P. C., Schumacher, J. $€ *, Amartey, S., Ghosh, T., Burgis, T. A., Zhang, X., Nixon, B. T., and Buck, M. $€  (2009) Functional roles of the pre-sensor I insertion sequence in an AAA bacterial enhancer binding protein, Mol Microbiol. 73, 519-533.

Wigneshweraraj, S., Bose, D., Burrows, P. C., Joly, N., Schumacher, J., Rappas, M., Pape, T., Zhang, X., Stockley, P., Severinov, K., and Buck, M. (2008) Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor, Mol Microbiol 68, 538-546.

Schumacher, J$€ ., Joly, N., Claeys-Bouuaert, I. L., Aziz, S. A., Rappas, M., Zhang, X., and Buck$€ , M. (2008) Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA ring ATPase, J Mol Biol 381, 1-12.

Burrows, P. C., Wigneshweraraj, S., Bose, D., Joly, N., Schumacher, J., Rappas, M., Pape, T., Stockley, P. G., Zhang, X., and Buck, M. (2008) Visualizing the organization and reorganization of transcription complexes for gene expression, Biochem Soc Trans 36, 776-779.

Bose, D., Joly, N., Pape, T., Rappas, M., Schumacher, J., Buck, M., and Zhang, X. (2008) Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins, Biochem Soc Trans 36, 83-88.

Schumacher, J$€ ., Joly, N., Rappas, M., Bradley, D., Wigneshweraraj, S. R., Zhang, X., and Buck, M. $€  (2007) Sensor I threonine of the AAA ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase, J Biol Chem 282, 9825-9833.

Schumacher, J$€ ., Joly, N., Rappas, M., Zhang, X., and Buck, M. (2006) Structures and organisation of AAA enhancer binding proteins in transcriptional activation, J Struct Biol 156, 190-199.

Rappas, M., Schumacher, J*., Niwa, H., Buck, M., and Zhang, X. (2006) Structural basis of the nucleotide driven conformational changes in the AAA domain of transcription activator PspF, J Mol Biol 357, 481-492.

Joly, N., Schumacher, J., and Buck, M. (2006) Heterogeneous Nucleotide Occupancy Stimulates Functionality of Phage Shock Protein F, an AAA Transcriptional Activator, J Biol Chem 281, 34997-35007.

Buck, M., Bose, D., Burrows, P., Cannon, W., Joly, N., Pape, T., Rappas, M., Schumacher, J., Wigneshweraraj, S., and Zhang, X. (2006) A second paradigm for gene activation in bacteria, Biochem Soc Trans 34, 1067-1071.

Wigneshweraraj, S. R., Burrows, P. C., Bordes, P., Schumacher, J., Rappas, M., Finn, R. D., Cannon, W. V., Zhang, X., and Buck, M. (2005) The second paradigm for activation of transcription, Prog Nucleic Acid Res Mol Biol 79, 339-369.

Rappas, M., Schumacher, J., Beuron, F., Niwa, H., Bordes, P., Wigneshweraraj, S., Keetch, C. A., Robinson, C. V., Buck, M., and Zhang, X. (2005) Structural insights into the activity of enhancer-binding proteins, Science 307, 1972-1975.

Schumacher, J., Zhang, X., Jones, S., Bordes, P., and Buck, M. (2004) ATP-dependent transcriptional activation by bacterial PspF AAA protein, J Mol Biol 338, 863-875.

Cannon, W. V., Schumacher, J., and Buck, M. (2004) Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA transcriptional activator protein, Nucleic Acids Res 32, 4596-4608.

Bordes, P., Wigneshweraraj, S. R., Schumacher, J., Zhang, X., Chaney, M., and Buck, M. (2003) The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54, Proc Natl Acad Sci U S A 100, 2278-2283.

Zhang, X., Chaney, M., Wigneshweraraj, S. R., Schumacher, J., Bordes, P., Cannon, W., and Buck, M. (2002) Mechanochemical ATPases and transcriptional activation, Mol Microbiol 45, 895-903.

Elderkin, S., Jones, S., Schumacher, J., Studholme, D., and Buck, M. (2002) Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF, J Mol Biol 320, 23-37.

Ton-Hoang, B., Salhi, M., Schumacher, J., Da Re, S., and Kahn, D. (2001) Promoter-specific involvement of the FixJ receiver domain in transcriptional activation, J Mol Biol 312, 583-589.

Chaney, M., Grande, R., Wigneshweraraj, S. R., Cannon, W., Casaz, P., Gallegos, M. T., Schumacher, J., Jones, S., Elderkin, S., Dago, A. E., Morett, E., and Buck, M. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action, Genes Dev 15, 2282-2294.

Da Re, S., Schumacher, J*., Rousseau, P., Fourment, J., Ebel, C., and Kahn, D. (1999) Phosphorylation-induced dimerization of the FixJ receiver domain, Mol Microbiol 34, 504-511.

Birck, C., Mourey, L., Gouet, P., Fabry, B., Schumacher, J., Rousseau, P., Kahn, D., and Samama, J. P. (1999) Conformational changes induced by phosphorylation of the FixJ receiver domain, Structure 7, 1505-1515.

Schumacher J. (1997) Molecular mechanism of the response regulator FixJ. Molecular Microbiology, Vol 3, 334 pages. Springer. Verlag ISBN 3-540-63873-3.

Collaborators

Prof Menu Saraf, Gujarat University, Plant growth promoting bacteria, 2016

Prof. Ray Dixon, John Innes Centre, nitrogen fixation, 2016

Prof Phil Poole, University of Oxford, nitrogen fixation, 2016

Dr Baojun Wang, University of Edinburgh, Synthetic Biology, 2015

Guest Lectures

Keynote speaker, MICROBIAL BIOTECH INTERACTIONS FOR SUSTAINABLE AGRICULTURE AND SOCIETAL DEVELOPMENT. Feb 6 and 7, 2020., Gujarat University, India, 2020

Synthetic transcription factors allow tuneable synthetic control of the complex bacterial ntr regulon., EMBL, EMBO workshop, Creating is Understanding: Synthetic Biology Masters Complexity, Heidelberg, Germany, 22 - 25 Sep. Invited Speaker (Victor deLorenzo):, 2019

In vivo absolute and relative Nif protein abundances of Klebsiella oxytoca., Stockholm University, 13th European Nitrogen Fixation Conference, 18-21 August 2018, Stockholm. Invited Speaker: Meeting on Molecular aspects of regulation and metabolism in nitrogen fixation:, 2018

Workshop ‘Multiscale analysis of host-microbe interactions, Session organiser and chair., Earlham Institute, Norwich, UK, 2017

‘Synthetic Rebalancing of Nitrogen Fixation and Nitrogen Assimilation in Diazotrophs’ (, 12th European Nitrogen Fixation Conference (23-29 August)., Budapest, 2016