Imperial College London

Dr Julia E. Stawarz

Faculty of Natural SciencesDepartment of Physics

Academic Visitor
 
 
 
//

Contact

 

+44 (0)20 7594 7766j.stawarz

 
 
//

Location

 

6M71Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

117 results found

Robertson S, Eastwood J, Stawarz J, Russell C, Giles B, Burch Jet al., 2022, Survey of EDR-associated Magnetopause Flux Ropes with MMS

<jats:p>&amp;lt;p&amp;gt;Flux ropes are twisted magnetic field structures produced during magnetic reconnection. They are thought to be important for energy transport and particle acceleration and are commonly observed throughout space plasma environments, including at the Earth&amp;amp;#8217;s magnetopause. Flux Transfer Events (FTEs), which typically contain flux ropes, have been observed to grow in size and flux content as they are convected over the magnetopause and into the magnetotail, contributing to flux transport in the Dungey cycle. More recently, small-scale flux ropes have been observed inside the Electron Diffusion Region (EDR) during magnetopause reconnection.&amp;amp;#160;&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;&amp;lt;br&amp;gt;In this study, we investigate the link between the EDR and flux ropes, presenting a survey of 245 flux ropes observed by the Magnetospheric Multiscale (MMS) mission on days during which the spacecraft also encountered the EDR. MMS measures the thermal electron and ion 3D distributions at 30 msec and 150 msec time resolution, respectively, and at spacecraft separations down to a few kilometres allowing the study of such electron-scale phenomena. We find that flux ropes are more likely to be observed closer to the EDR, and that flux ropes observed closer to the EDR tend to have greater axial magnetic field strength and therefore greater flux content. We suggest that we could be sampling a subset of flux ropes that are recently formed by the EDR and discuss how this impacts current theories for flux rope evolution on the magnetopause.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Stawarz JE, Eastwood JP, Phan T, Gingell IL, Pyakurel PS, Shay MA, Robertson SL, Russell CT, Le Contel Oet al., 2022, Turbulence-driven magnetic reconnection and the magnetic correlation length in collisionless plasma turbulence

<jats:p>&amp;lt;p&amp;gt;&amp;lt;span&amp;gt;Observations of Earth&amp;amp;#8217;s magnetosheath from the Magnetospheric Multiscale (MMS) mission have provided an unprecedented opportunity to examine the detailed structure of the multitude of thin current sheets that are generated by plasma turbulence, revealing that a novel form of magnetic reconnection, which has come to be known as electron-only reconnection, can occur within magnetosheath turbulence. These electron-only reconnection events occur at thin electron-scale current sheets and have super-Alfv&amp;amp;#233;nic electron jets that can approach the electron Alfv&amp;amp;#233;n speed; however, they do not appear to have signatures of ion jets. It is thought that electron-only reconnection can occur when the length of the reconnecting current sheets along the outflow direction is short enough that the ions cannot fully couple to the newly reconnected magnetic field lines before they fully relax. In this work, we examine how the correlation length of the magnetic fluctuations in a turbulent plasma, which constrains the length of the current sheets that can be formed by the turbulence, impacts the nature of turbulence-driven magnetic reconnection. Using observations from MMS, we systematically examine 60 intervals of magnetosheath turbulence &amp;amp;#8211; identifying 256 small-scale reconnection events, both with and without ion jets. We demonstrate that the properties of the reconnection events transition to become more consistent with electron-only reconnection when the magnetic correlation length of the turbulence is below ~20 ion inertial lengths. We further discuss the implications of the results in the context of other turbulent plasmas by considering observations of turbulent fluctuations in the solar wind. &amp;lt;br&amp;gt;&amp;lt;/span&amp;gt;&amp;lt;/p&amp;gt;</jats:p>

Journal article

Pyakurel P, Phan T, Shay M, Stawarz J, Øieroset M, Cassak P, Haggerty C, Drake J, Li TC, Burch J, Ergun R, Gershman D, Giles B, Torbert R, Strangeway R, Russell Cet al., 2022, On the short-scale spatial variability of electron inflows in electron-only magnetic reconnection in the turbulent magnetosheath observed by MMS

<jats:p>&amp;lt;p&amp;gt;In the Earth&amp;amp;#8217;s turbulent magnetosheath downstream of the quasiparallel bow shock region, magnetic reconnection without ion coupling was observed with bi-directional super-Alfv&amp;amp;#233;nic electron jets. The lack of ion coupling was attributed to the small-scale sizes of the current sheets. In an electron-only reconnection event that occurred on 26 December 2016, we examine the detailed properties of electron inflows observed by all 4 MMS spacecraft. Even though the farthest MMS probe in the outflow direction from the X-line was no more than 8 electron skin depth, the electron inflows have significant asymmetry and highly variable amplitudes. We compare MMS observations with 2D-kinetic PIC simulation and find that the asymmetry in the inflow stems directly from the tilt of the out-of-plane (guide) magnetic field structure in the reconnection plane, with inflow asymmetry enhanced in the downstream region.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Franci L, Papini E, Micera A, Matteini L, Stawarz J, Lapenta G, Burgess D, Hellinger P, Landi S, Verdini A, Montagud-Camps Vet al., 2022, Fully kinetic simulations of the near-Sun solar wind plasma: turbulence, reconnection, and particle heating

<jats:p>&amp;lt;p&amp;gt;We model the development of plasma turbulence in the near-Sun solar wind with high-resolution fully-kinetic particle-in-cell (PIC) simulations, initialised with plasma conditions measured by Parker Solar Probe during its first solar encounter (ion and electron plasma beta &amp;amp;#8804; 1 and a large amplitude of the turbulent fluctuations). The power spectra of the plasma and electromagnetic fluctuations are characterized by multiple power-law intervals, with a transition and a considerable steepening in correspondence of the electron scales. In the same range of scales, the kurtosis of the magnetic fluctuations is observed to further increase, hinting at a higher level of intermittency. We observe a number of electron-only reconnection events, which are responsible for an increase of the electron temperature in the direction parallel to the ambient field. The total electron temperature, however, exhibits only a small increase due to the cooling of electrons in the perpendicular direction, leading to a strong temperature anisotropy. We also analyse the power spectra of the different terms of the electric field in the generalised Ohm&amp;amp;#8217;s law, their linear and nonlinear components, and their alignment, to get a deeper insight on the nature of the turbulent cascade. Finally, we compare our results with those from hybrid simulations with the same parameters, as well as with spacecraft observations.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Blasl KA, Nakamura T, Plaschke F, Nakamura R, Hasegawa H, Stawarz JE, Liu Y-H, Peery SA, Holmes JC, Hosner M, Schmid D, Roberts OW, Volwerk Met al., 2022, Multi-scale observations and evolution of the magnetopause Kelvin-Helmholtz waves during southward IMF

<jats:p>&amp;lt;p&amp;gt;The mass and energy transfer across Earth&amp;amp;#8217;s magnetopause is caused by a variety of different plasma processes. One of these processes is the Kelvin-Helmholtz instability (KHI), excited by the velocity shear between the fast-flowing magnetosheath plasma and the relatively stagnant magnetosphere. It has been frequently observed during periods of northward interplanetary magnetic field (IMF), however much less is known about its behaviour during southward IMF conditions.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;We present the first Magnetospheric Multiscale (MMS) observations of KH waves and vortices at the dusk-flank magnetopause during southward IMF conditions on September 23, 2017. The instability criterion for the KHI was fulfilled during this event. The boundary normal vectors, obtained by using multi-point methods, are consistent with the predicted structures of the KH waves. We further performed a series of realistic 2D and 3D fully kinetic PIC simulations based on the plasma parameters observed during this MMS event. A comparison to results from these simulations demonstrated quantitative consistencies with the MMS data in many aspects such as the flow and total pressure variations in the KH waves, and the signatures of the non-linearly rolled up KH vortices including the Low Density Faster Than Sheath (LDFTS) plasma.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;The simulations further showed that secondary instabilities are excited at the edges of the primary KHI. The Rayleigh-Taylor instability (RTI) can lead to the penetration of high-density arms into the magnetospheric side and disturb the structures of the vortex layer, leading to irregular variations of the surface waves. This can be an important factor in explaining the lower observational probability of KH waves during southward IMF than northward IMF. In the non-linear growth stage of the primary KHI, the lower-hybrid drift instabi

Journal article

Laker R, Horbury T, Matteini L, Woolley T, Stawarz J, Bale Set al., 2022, On the Deflections of Switchbacks

<jats:p>&amp;lt;p&amp;gt;Following their presence during Parker Solar Probe&amp;amp;#8217;s (PSP) first encounter, switchbacks have become an active area of research with several proposed mechanisms for their formation. Many of these theories have testable predictions, although it is not trivial to compare simulation results with in-situ data from PSP. For example, there is some debate regarding the deflection direction of switchbacks, with some theories predicting a consistent magnetic deflection in the +T direction in the RTN coordinate system. Such arguments are largely focussed on the first two PSP encounters, as these are the most studied encounters in the literature. We examine the deflection direction of switchbacks for the first eight PSP encounters, with the aim to clear up any ambiguity regarding this property of switchbacks. Much like the earlier results of Horbury et al. 2020 (during the first encounter) we find that switchbacks tend to deflect in the same direction for hours at a time. Although there is some consistency in deflection direction within an individual encounter, crucially we find that there is no preferred deflection direction across all the encounters. We speculate about the cause of these results and what implications they may have for switchback formation theories.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Woolley T, Matteini L, Horbury TS, Bale SD, Laker R, Woodham LD, Stawarz JEet al., 2022, Linking In-situ Magnetic and Density Structures in the Low Latitude Slow Solar Wind to Solar Origins

<jats:p>&amp;lt;p&amp;gt;To date, Parker Solar Probe has completed ten solar encounters and measured a wealth of in-situ data down to heliocentric distances of ~13 solar radii. This data provides a novel opportunity to investigate the near-Sun environment and understand the young slow solar wind. Typically, the slow solar wind observed in the inner heliosphere is split into an Alfvenic and a non-Alfvenic component. The Alfvenic slow wind is thought to originate from overexpanded coronal hole field lines, whereas the non-Alfvenic slow wind could originate from active regions, transient events, or reconnection at the tips of helmet streamers. In this work, we find structures associated with non-Alfvenic slow wind in the low latitude wind measured by Parker Solar Probe. We identify at least two distinct types of structure using magnetic field magnitude, electron pitch angle distributions, and electron number density. After statistically analysing these structures, with a focus on their plasma properties, shape, and location with respect to the heliospheric current sheet, we link them to solar origins. We find structures that are consistent with the plasma blobs seen previously in remote sensing observations.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Stawarz J, Eastwood J, Phan T, Gingell I, Pyakurel P, Shay M, Robertson S, Russell C, Le Contel Oet al., 2022, Turbulence-driven magnetic reconnection and the magnetic correlation length: observations from magnetospheric multiscale in Earth's magnetosheath, Physics of Plasmas, Vol: 29, Pages: 1-20, ISSN: 1070-664X

Turbulent plasmas generate a multitude of thin current structures that can be sites for magnetic reconnection. The Magnetospheric Multiscale (MMS) mission has recently enabled the detailed examination of such turbulent current structures in Earth's magnetosheath and revealed that a novel type of reconnection, known as electron-only reconnection, can occur. In electron-only reconnection, ions do not have enough space to couple to the newly reconnected magnetic fields, suppressing ion jet formation and resulting in thinner sub-proton-scale current structures with faster super-Alfvénic electron jets. In this study, MMS observations are used to examine how the magnetic correlation length (λC) of the turbulence, which characterizes the size of the large-scale magnetic structures and constrains the length of the current sheets formed, influences the nature of turbulence-driven reconnection. We systematically identify 256 reconnection events across 60 intervals of magnetosheath turbulence. Most events do not appear to have ion jets; however, 18 events are identified with ion jets that are at least partially coupled to the reconnected magnetic field. The current sheet thickness and electron jet speed have a weak anti-correlation, with faster electron jets at thinner current sheets. When đœ†đ¶â‰Č20 ion inertial lengths, as is typical near the sub-solar magnetosheath, a tendency for thinner current sheets and potentially faster electron jets is present. The results are consistent with electron-only reconnection being more prevalent for turbulent plasmas with relatively short λC and may be relevant to the nonlinear dynamics and energy dissipation in turbulent plasmas.

Journal article

Blasl KA, Nakamura TKM, Plaschke F, Nakamura R, Hasegawa H, Stawarz JE, Liu Y-H, Peery S, Holmes JC, Hosner M, Schmid D, Roberts OW, Volwerk Met al., 2022, Multi-scale observations of the magnetopause Kelvin-Helmholtz waves during southward IMF, PHYSICS OF PLASMAS, Vol: 29, ISSN: 1070-664X

Journal article

Nakamura TKM, Blasl KA, Hasegawa H, Umeda T, Liu Y-H, Peery SA, Plaschke F, Nakamura R, Holmes JC, Stawarz JE, Nystrom WDet al., 2022, Multi-scale evolution of Kelvin–Helmholtz waves at the earth's magnetopause during southward IMF periods, Physics of Plasmas, Vol: 29, Pages: 012901-012901, ISSN: 1070-664X

At the Earth's low-latitude magnetopause, the Kelvin–Helmholtz instability (KHI), driven by the velocity shear between the magnetosheath and magnetosphere, has been frequently observed during northward interplanetary magnetic field (IMF) periods. However, the signatures of the KHI have been much less frequently observed during southward IMF periods, and how the KHI develops under southward IMF has been less explored. Here, we performed a series of realistic 2D and 3D fully kinetic simulations of a KH wave event observed by the Magnetospheric Multiscale (MMS) mission at the dusk-flank magnetopause during southward IMF on September 23, 2017. The simulations demonstrate that the primary KHI bends the magnetopause current layer and excites the Rayleigh–Taylor instability (RTI), leading to penetration of high-density arms into the magnetospheric side. This arm penetration disturbs the structures of the vortex layer and produces intermittent and irregular variations of the surface waves which significantly reduces the observational probability of the periodic KH waves. The simulations further demonstrate that in the non-linear growth phase of the primary KHI, the lower-hybrid drift instability (LHDI) is induced near the edge of the primary vortices and contributes to an efficient plasma mixing across the magnetopause. The signatures of the large-scale surface waves by the KHI/RTI and the small-scale fluctuations by the LHDI are reasonably consistent with the MMS observations. These results indicate that the multi-scale evolution of the magnetopause KH waves and the resulting plasma transport and mixing as seen in the simulations may occur during southward IMF

Journal article

Adhikari S, Parashar TN, Shay MA, Matthaeus WH, Pyakurel PS, Fordin S, Stawarz JE, Eastwood JPet al., 2021, Energy transfer in reconnection and turbulence, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol: 104, ISSN: 1539-3755

Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von Kármán Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like energy transfer.

Journal article

Eastwood JP, Stawarz JE, Phan TD, Laker R, Robertson S, Zhao L-L, Zank GP, Lavraud B, Shay MA, Evans V, Angelini V, O'Brien H, Horbury TSet al., 2021, Solar Orbiter observations of an ion-scale flux rope confined to a bifurcated solar wind current sheet, Astronomy & Astrophysics, Vol: 656, Pages: 1-8, ISSN: 0004-6361

Context. Flux ropes in the solar wind are a key element of heliospheric dynamics and particle acceleration. When associated withcurrent sheets, the primary formation mechanism is magnetic reconnection and flux ropes in current sheets are commonly used astracers of the reconnection process.Aims. Whilst flux ropes associated with reconnecting current sheets in the solar wind have been reported, their occurrence, sizedistribution, and lifetime are not well understood.Methods. Here we present and analyse new Solar Orbiter magnetic field data reporting novel observations of a flux rope confined toa bifurcated current sheet in the solar wind. Comparative data and large-scale context is provided by Wind.Results. The Solar Orbiter observations reveal that the flux rope, which does not span the current sheet, is of ion scale, and in areconnection formation scenario, existed for a prolonged period of time as it was carried out in the reconnection exhaust. Wind is alsofound to have observed clear signatures of reconnection at what may be the same current sheet, thus demonstrating that reconnectionsignatures can be found separated by as much as ∼ 2 000 Earth radii, or 0.08 au.Conclusions. The Solar Orbiter observations provide new insight into the hierarchy of scales on which flux ropes can form, and showthat they exist down to the ion scale in the solar wind. The context provided by Wind extends the spatial scale over which reconnectionsignatures have been found at solar wind current sheets. The data suggest the local orientations of the current sheet at Solar Orbiterand Wind are rotated relative to each other, unlike reconnection observed at smaller separations; the implications of this are discussedwith reference to patchy vs. continuous reconnection scenarios.

Journal article

Lavraud B, Kieokaew R, Fargette N, Louarn P, Fedorov A, André N, Fruit G, Génot V, Réville V, Rouillard AP, Plotnikov I, Penou E, Barthe A, Prech L, Owen CJ, Bruno R, Allegrini F, Berthomier M, Kataria D, Livi S, Raines JM, D'Amicis R, Eastwood JP, Froment C, Laker R, Maksimovic M, Marcucci F, Perri S, Perrone D, Phan TD, Stansby D, Stawarz J, Redondo ST, Vaivads A, Verscharen D, Zouganelis I, Angelini V, Evans V, Horbury TS, O'brien Het al., 2021, Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind, Journal of Astrophysics and Astronomy, Vol: 656, Pages: 1-8, ISSN: 0250-6335

Context. Spacecraft observations early revealed frequent multiple protonpopulations in the solar wind. Decades of research on their origin have focusedon processes such as magnetic reconnection in the low corona and wave-particleinteractions in the corona and locally in the solar wind.Aims.This study aimsto highlight that multiple proton populations and beams are also produced bymagnetic reconnection occurring locally in the solar wind. Methods. We use highresolution Solar Orbiter proton velocity distribution function measurements,complemented by electron and magnetic field data, to analyze the association ofmultiple proton populations and beams with magnetic reconnection during aperiod of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6reconnecting current sheets with associated multiple proton populations andbeams, including a case of magnetic reconnection at a switchback boundary, arefound during this day. This represents 2% of the measured distributionfunctions. We discuss how this proportion may be underestimated, and how it maydepend on solar wind type and distance from the Sun. Conclusions. Althoughsuggesting a likely small contribution, but which remains to be quantitativelyassessed, Solar Orbiter observations show that magnetic reconnection must beconsidered as one of the mechanisms that produce multiple proton populationsand beams locally in the solar wind.

Journal article

Matteini L, Laker R, Horbury T, Woodham L, Bale SD, Stawarz JE, Woolley T, Steinvall K, Jones GH, Grant SR, Afghan Q, Galand M, O'Brien H, Evans V, Angelini V, Maksimovic M, Chust T, Khotyaintsev Y, Krasnoselskikh V, Kretzschmar M, Lorfevre E, Plettemeier D, Soucek J, Steller M, Stverak S, Travnicek P, Vaivads A, Vecchio A, Wimmer-Schweingruber RF, Ho GC, Gomez-Herrero R, Rodriguez-Pacheco J, Louarn P, Fedorov A, Owen CJ, Bruno R, Livi S, Zouganelis I, Muller Det al., 2021, Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS): Magnetic field draping and cometary pick-up ion waves, Astronomy and Astrophysics: a European journal, Vol: 656, ISSN: 0004-6361

ontext. Solar Orbiter is expected to have flown close to the tail of comet C/2019 Y4 (ATLAS) during the spacecraft’s first perihelion in June 2020. Models predict a possible crossing of the comet tails by the spacecraft at a distance from the Sun of approximately 0.5 AU.Aims. This study is aimed at identifying possible signatures of the interaction of the solar wind plasma with material released by comet ATLAS, including the detection of draped magnetic field as well as the presence of cometary pick-up ions and of ion-scale waves excited by associated instabilities. This encounter provides us with the first opportunity of addressing such dynamics in the inner Heliosphere and improving our understanding of the plasma interaction between comets and the solar wind.Methods. We analysed data from all in situ instruments on board Solar Orbiter and compared their independent measurements in order to identify and characterize the nature of structures and waves observed in the plasma when the encounter was predicted.Results. We identified a magnetic field structure observed at the start of 4 June, associated with a full magnetic reversal, a local deceleration of the flow and large plasma density, and enhanced dust and energetic ions events. The cross-comparison of all these observations support a possible cometary origin for this structure and suggests the presence of magnetic field draping around some low-field and high-density object. Inside and around this large scale structure, several ion-scale wave-forms are detected that are consistent with small-scale waves and structures generated by cometary pick-up ion instabilities.Conclusions. Solar Orbiter measurements are consistent with the crossing through a magnetic and plasma structure of cometary origin embedded in the ambient solar wind. We suggest that this corresponds to the magnetotail of one of the fragments of comet ATLAS or to a portion of the tail that was previously disconnected and advected past the spacec

Journal article

Kieokaew R, Lavraud B, Yang Y, Matthaeus WH, Ruffolo D, Stawarz JE, Aizawa S, Foullon C, GĂ©not V, Pinto RF, Fargette N, Louarn P, Rouillard A, Fedorov A, Penou E, Owen CJ, Horbury T, O'Brien H, Evans V, Angelini Vet al., 2021, Solar Orbiter observations of the Kelvin-Helmholtz waves in the solar wind, Astronomy and Astrophysics: a European journal, Vol: 656, ISSN: 0004-6361

Context. The Kelvin-HeImholtz (KH) instability is a nonlinear shear-driven instability that develops at the interface between shear flows in plasmas. KH waves have been inferred in various astrophysical plasmas, and have been observed in situ at the magnetospheric boundaries of solar-system planets and through remote sensing at the boundaries of coronal mass ejections.Aims. KH waves are also expected to develop at flow shear interfaces in the solar wind. While they were hypothesized to play an important role in the mixing of plasmas and in triggering solar wind fluctuations, their direct and unambiguous observation in the solar wind was still lacking.Methods. We report in situ observations of quasi-periodic magnetic and velocity field variations plausibly associated with KH waves using Solar Orbiter during its cruise phase. They are found in a shear layer in the slow solar wind in the close vicinity of the heliospheric current sheet. An analysis was performed to derive the local configuration of the waves. A 2D magnetohydrodynamics simulation was also set up with approximate empirical values to test the stability of the shear layer. In addition, magnetic spectra of the event were analyzed.Results. We find that the observed conditions satisfy the KH instability onset criterion from the linear theory analysis, and its development is further confirmed by the simulation. The current sheet geometry analyses are found to be consistent with KH wave development, albeit with some limitations likely owing to the complex 3D nature of the event and solar wind propagation. Additionally, we report observations of an ion jet consistent with magnetic reconnection at a compressed current sheet within the KH wave interval. The KH activity is found to excite magnetic and velocity fluctuations with power law scalings that approximately follow k−5/3 and k−2.8 in the inertial and dissipation ranges, respectively. Finally, we discuss reasons for the lack of in situ KH wave det

Journal article

Woolley T, Matteini L, McManus MD, Bercic L, Badman ST, Woodham LD, Horbury TS, Bale SD, Laker R, Stawarz JE, Larson DEet al., 2021, Plasma properties, switchback patches, and low alpha-particle abundance in slow Alfvenic coronal hole wind at 0.13 au, MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Vol: 508, Pages: 236-244, ISSN: 0035-8711

The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (∼0.13 au) and latitude (∼–3∘.5⁠) across these encounters to reduce spatial evolution effects. By comparing the plasma of each stream, we confirm that they are not dominated by variable transient events, despite PSP’s proximity to the heliospheric current sheet. Both streams are consistent with a previous slow Alfvénic solar wind study once radial effects are considered, and appear to originate at the Southern polar coronal hole boundary. We also show that the switchback properties are not distinctly different between these two streams. Low α-particle abundance (∼0.6 per cent) is observed in the encounter 5 stream, suggesting that some physical mechanism must act on coronal hole boundary wind to cause α-particle depletion. Possible explanations for our observations are discussed, but it remains unclear whether the depletion occurs during the release or the acceleration of the wind. Using a flux tube argument, we note that an α-particle abundance of ∼0.6 per cent in this low-velocity wind could correspond to an abundance of ∼0.9 per cent at 1 au. Finally, as the two streams roughly correspond to the spatial extent of a switchback patch, we suggest that patches are distinct features of coronal hole wind.

Journal article

Laker R, Horbury TS, Bale SD, Matteini L, Woolley T, Woodham LD, Stawarz JE, Davies EE, Eastwood JP, Owens MJ, O'Brien H, Evans V, Angelini V, Richter I, Heyner D, Owen CJ, Louarn P, Fedorov Aet al., 2021, Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows, Astronomy and Astrophysics: a European journal, Vol: 652, Pages: 1-10, ISSN: 0004-6361

Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously.Aims. We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude.Methods. We visualise the sector structure of the inner heliosphere by ballistically mapping the polarity and solar wind speed from several spacecraft onto the Sun’s source surface. We then assess the HCS morphology and orientation with the in situ data and compare this with a predicted HCS shape.Results. We resolve ripples in the HCS on scales of a few degrees in longitude and latitude, finding that the local orientations of sector boundaries were broadly consistent with the shape of the HCS but were steepened with respect to a modelled HCS at the Sun. We investigate how several CIRs varied with latitude, finding evidence for the compression region affecting slow solar wind outside the latitude extent of the faster stream. We also identified several transient structures associated with HCS crossings and speculate that one such transient may have disrupted the local HCS orientation up to five days after its passage.Conclusions. We have shown that the solar wind structure varies significantly with latitude, with this constellation providing context for solar wind measurements that would not be possible with a single spacecraft. These measurements provide an accurate representation of the solar wind within ±10° latitude, which could be used as a more rigorous constraint on solar wind models and space weather predictions. In the future, this range of latitudes will increase as SO’s orbit becomes more inclined.

Journal article

Masters A, Dunn W, Stallard T, Manners H, Stawarz Jet al., 2021, Magnetic reconnection near the planet as a possible driver of Jupiter's mysterious polar auroras, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-10, ISSN: 2169-9380

Auroral emissions have been extensively observed at the Earth, Jupiter, and Saturn. These planets all have appreciable atmospheres and strong magnetic fields, and their auroras predominantly originate from a region encircling each magnetic pole. However, Jupiter’s auroras poleward of these “main” emissions are brighter and more dynamic, and the drivers responsible for much of these mysterious polar auroras have eluded identification to date. We propose that part of the solution may stem from Jupiter’s stronger magnetic field. We model large-scale Alfvénic perturbations propagating through the polar magnetosphere toward Jupiter, showing that the resulting <0.1° deflections of the magnetic field closest to the planet could trigger magnetic reconnection as near as ∼0.2 Jupiter radii above the cloud tops. At Earth and Saturn this physics should be negligible, but reconnection electric field strengths above Jupiter’s poles can approach ∼1 V m−1, typical of the solar corona. We suggest this near-planet reconnection could generate beams of high-energy electrons capable of explaining some of Jupiter’s polar auroras.

Journal article

Nakamura TKM, Hasegawa H, Genestreti KJ, Denton RE, Phan TD, Stawarz JE, Nakamura R, Nystrom WDet al., 2021, Fast cross‐scale energy transfer during turbulent magnetic reconnection, Geophysical Research Letters, Vol: 48, Pages: 1-8, ISSN: 0094-8276

Magnetic reconnection is a key fundamental process in collisionless plasmas that explosively converts magnetic energy to plasma kinetic and thermal energies through a change of magnetic field topology in a central electron-scale region called the electron diffusion region (EDR). Past simulations and observations demonstrated that this process causes efficient energy conversion through the formation of multiple macro-scale or micro-scale magnetic islands/flux ropes. However, the coupling of these phenomena on different spatiotemporal scales is still poorly understood. Here, based on a new large-scale fully-kinetic simulation with a realistic, initially-fluctuating magnetic field, we demonstrate that macro-scale evolution of turbulent reconnection involving merging of macro-scale islands induces repeated, quick formation of new electron-scale islands within the EDR which soon grow to larger scales. This process causes an efficient cross-scale energy transfer from electron- to larger-scales, and leads to strong electron energization within the growing islands.

Journal article

Woodham L, Horbury T, Matteini L, Woolley T, Laker R, Bale S, Nicolaou G, Stawarz J, Stansby D, Hietala H, Larson D, Livi R, Verniero J, McManus M, Kasper J, Korreck K, Raouafi N, Moncuquet M, Pulupa Met al., 2021, Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere, Astronomy and Astrophysics: a European journal, Vol: 650, Pages: 1-7, ISSN: 0004-6361

Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the helio-sphere. Recent observations by Parker Solar Probe(PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by ‘quieter’ radial fields. Aims. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. Methods. We fit 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, Tp,‖, and perpendicular, Tp,⊥, temperature. Results. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in Tp,‖, while Tp,⊥remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. Conclusions. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced Tp,‖that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona.

Journal article

Quijia P, Fraternale F, Stawarz J, VĂĄsconez C, Perri S, Marino R, Yordanova E, Sorriso-Valvo Let al., 2021, Comparing turbulence in a Kelvin-Helmholtz instability region across the terrestrial magnetopause, Monthly Notices of the Royal Astronomical Society, Vol: 503, Pages: 4815-4827, ISSN: 0035-8711

The properties of turbulence observed within the plasma originating from the magnetosheath and the magnetospheric boundary layer, which have been entrained within vortices driven by the Kelvin–Helmholtz Instability (KHI), are compared. The goal of such a study is to determine similarities and differences between the two different regions. In particular, we study spectra, intermittency and the third-order moment scaling, as well as the distribution of a local energy transfer rate proxy. The analysis is performed using the Magnetospheric Multiscale data from a single satellite that crosses longitudinally the KHI. Two sets of regions, one set containing predominantly magnetosheath plasma and the other containing predominantly magnetospheric plasma, are analysed separately, thus allowing us to explore turbulence properties in two portions of very different plasma samples. Results show that the dynamics in the two regions is different, with the boundary layer plasma presenting a shallower spectra and larger energy transfer rate, indicating an early stage of turbulence. In both regions, the effect of the KHI is evidenced.

Journal article

Quijia P, Fraternale F, Stawarz JE, Vasconez CL, Perri S, Marino R, Yordanova E, Sorriso-Valvo Let al., 2021, Comparing turbulence in a Kelvin-Helmholtz instability region across the terrestrial magnetopause (vol 503, pg 4815, 2021), MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Vol: 503, Pages: 4828-4828, ISSN: 0035-8711

Journal article

Robertson SL, Eastwood JP, Stawarz JE, Hietala H, Phan TD, Lavraud B, Burch JL, Giles B, Gershman DJ, Torbert R, Lindqvist P, Ergun RE, Russell CT, Strangeway RJet al., 2021, Electron trapping in magnetic mirror structures at the edge of magnetopause flux ropes, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-17, ISSN: 2169-9380

Flux ropes are a proposed site for particle energization during magnetic reconnection, with several mechanisms proposed. Here, Magnetospheric Multiscale mission observations of magnetic mirror structures on the edge of two ion‐scale magnetopause flux ropes are presented. Donut‐shaped features in the electron pitch angle distributions provide evidence for electron trapping in the structures. Furthermore, both events show trapping with extended 3D structure along the body of the flux rope. Potential formation mechanisms, such as the magnetic mirror instability, are examined and the evolutionary states of the structures are compared. Pressure and force analysis suggest that such structures could provide an important electron acceleration mechanism for magnetopause flux ropes, and for magnetic reconnection more generally.

Journal article

Masters A, Dunn W, Stallard T, Manners H, Stawarz Jet al., 2021, Low-altitude magnetic reconnection events as possible drivers of Jupiter&amp;#8217;s polar auroras

<jats:p>&amp;lt;p&amp;gt;Charged particles impacting Jupiter&amp;amp;#8217;s atmosphere represent a major energy input, generating the most powerful auroral emissions in the Solar System. Most auroral features have now been explained as the result of impacting particles accelerated by quasi-static electric fields and/or wave-particle interactions in the surrounding space environment. However, the reason for Jupiter&amp;amp;#8217;s bright and dynamic polar regions remains a long-standing mystery. Recent spacecraft observations above these regions of &amp;amp;#8220;swirl&amp;amp;#8221; auroras have shown that high-energy electrons are regularly beamed away from the planet, which is inconsistent with traditional auroral drivers. The unknown downward-electron-acceleration mechanism operating close to Jupiter represents a gap in our fundamental understanding of planetary auroras. Here we propose a possible explanation for both the swirl auroras and the upward electron beams. We show that the perturbations of Jupiter&amp;amp;#8217;s strong magnetic field above the swirl regions that are driven by dynamics of the distant space environment can cause magnetic reconnection events at altitudes as low as ~0.2 Jupiter radii, rapidly releasing energy and potentially producing both the required downward and observed upward beams of electrons. Such an auroral driver has never before been postulated, resembling physics at work in the solar corona.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Woolley T, Matteini L, Horbury TS, Laker R, Woodham LD, Bale SD, Stawarz JE, Berčič L, McManus MD, Badman STet al., 2021, Characterisation and comparison of slow coronal hole wind intervals at 0.13au

<jats:p>&amp;lt;p&amp;gt;The slow solar wind is thought to consist of a component originating close to the Heliospheric Current Sheet (HCS) in the streamer belt and a component from over-expanded coronal hole boundaries. In order to understand the roles of these contributions with different origin, it is important to separate and characterise them. By exploiting the fact that Parker Solar Probe&amp;amp;#8217;s fourth and fifth orbits were the same and the solar conditions were similar, we identify intervals of slow polar coronal hole wind sampled at approximately the same heliocentric distance and latitude. Here, solar wind properties are compared, highlighting typical conditions of the slow coronal hole wind closer to the Sun than ever before. We explore different properties of the plasma, including composition, spectra and microphysics, and discuss possible origins for the features that are observed.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Kieokaew R, Lavraud B, Ruffolo D, Matthaeus W, Yang Y, Stawarz J, Aizawa S, Louarn P, Rouillard A, GĂ©not V, Fedorov A, Pinto R, Foullon C, Owen C, Horbury Tet al., 2021, Solar Orbiter observations of magnetic Kelvin-Helmholtz waves in the solar wind

<jats:p>&amp;lt;p&amp;gt;The Kelvin-Helmholtz instability (KHI) is a nonlinear shear-driven instability that develops at the interfaces between shear flows in plasmas. KHI is ubiquitous in plasmas and has been observed in situ at planetary interfaces and at the boundaries of coronal mass ejections in remote-sensing observations. KHI is also expected to develop at flow shear interfaces in the solar wind, but while it was hypothesized to play an important role in the mixing of plasmas and exciting solar wind fluctuations, its direct observation in the solar wind was still lacking. We report first in-situ observations of ongoing KHI in the solar wind using Solar Orbiter during its cruise phase. The KHI is found in a shear layer in the slow solar wind near the Heliospheric Current Sheet. We find that the observed conditions satisfy the KHI onset criterion from linear theory and the steepening of the shear boundary layer is consistent with the development of KH vortices. We further investigate the solar wind source of this event to understand the conditions that support KH growth. In addition, we set up a local MHD simulation using the empirical values to reproduce the observed KHI.&amp;amp;#160;This observed KHI in the solar wind provides robust evidence&amp;amp;#160;that&amp;amp;#160;shear instability develops in the solar wind, with obvious implications in the driving of solar wind fluctuations and turbulence. The reasons for the lack of previous such measurements are also discussed.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Stawarz J, Matteini L, Parashar T, Franci L, Eastwood J, Gonzalez C, Gingell I, Burch J, Ergun R, Ahmadi N, Giles B, Gershman D, Le Contel O, Lindqvist P-A, Russell C, Strangeway R, Torbert Ret al., 2021, Comparative Analysis of the Various Generalized Ohm's Law Terms in Magnetosheath Turbulence as Observed by Magnetospheric Multiscale

<jats:p>&amp;lt;p&amp;gt;&amp;lt;span&amp;gt;Electric fields (&amp;lt;strong&amp;gt;E&amp;lt;/strong&amp;gt;) play a fundamental role in facilitating the exchange of energy between the electromagnetic fields and the changed particles within a plasma. &amp;lt;/span&amp;gt;Decomposing &amp;lt;strong&amp;gt;E&amp;lt;/strong&amp;gt; into the contributions from the different terms in generalized Ohm's law, therefore, provides key insight into both the nonlinear and dissipative dynamics across the full range of scales within a plasma. Using the unique, high&amp;amp;#8208;resolution, multi&amp;amp;#8208;spacecraft measurements of three intervals in Earth's magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm's law, as well as the impact of a finite electron mass, on the turbulent electric field&amp;lt;strong&amp;gt; &amp;lt;/strong&amp;gt;spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to &amp;lt;strong&amp;gt;E&amp;lt;/strong&amp;gt; over the accessible length scales, which extend to scales smaller than the electron gyroradius at the greatest extent, with the Hall and electron pressure terms dominating at sub&amp;amp;#8208;ion scales. The strength of the non&amp;amp;#8208;ideal electron pressure contribution is stronger than expected from linear kinetic Alfv&amp;amp;#233;n waves and a partial anti&amp;amp;#8208;alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents within the turbulence. The relative contributions of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping &amp;lt;strong&am

Journal article

Stawarz JE, Matteini L, Parashar TN, Franci L, Eastwood JP, Gonzalez CA, Gingell IL, Burch JL, Ergun RE, Ahmadi N, Giles BL, Gershman DJ, Le Contel O, Lindqvist P, Russell CT, Strangeway RJ, Torbert RBet al., 2021, Comparative analysis of the various generalized Ohm's law terms in magnetosheath turbulence as observed by magnetospheric multiscale, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-14, ISSN: 2169-9380

Decomposing the electric field (E) into the contributions from generalized Ohm's law provides key insight into both nonlinear and dissipative dynamics across the full range of scales within a plasma. Using high‐resolution, multi‐spacecraft measurements of three intervals in Earth's magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm's law, as well as the impact of a finite electron mass, on the turbulent E spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to E over the accessible length scales, which extend to scales smaller than the electron inertial length at the greatest extent, with the Hall and electron pressure terms dominating at sub‐ion scales. The strength of the non‐ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti‐alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents in the turbulence. The relative contribution of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping E for the intervals examined in this study. Overall, the sum of the Ohm's law terms and measured E agree to within ∼ 20% across the observable scales. These results both confirm general expectations about the behavior of E in turbulent plasmas and highlight features that should be explored further theoretically.

Journal article

Eastwood JP, Goldman M, Phan TD, Stawarz JE, Cassak PA, Drake JF, Newman D, Lavraud B, Shay MA, Ergun RE, Burch JL, Gershman DJ, Giles BL, Lindqvist PA, Torbert RB, Strangeway RJ, Russell CTet al., 2020, Energy flux densities near the electron dissipation region in asymmetric magnetopause reconnection, Physical Review Letters, Vol: 125, Pages: 1-6, ISSN: 0031-9007

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

Journal article

Pouquet A, Rosenberg D, Stawarz JE, 2020, Interplay between turbulence and waves: large-scale helical transfer, and small-scale dissipation and mixing in fluid and Hall-MHD turbulence, ATTI Della Accademia Nazionale Dei Lincei Rendiconti Lincei Scienze Fisiche e Naturali, Vol: 31, Pages: 949-961, ISSN: 2037-4631

Novel features of turbulent flows have been analyzed recently, for example: (1) the possibility of an ideal invariant, such as the energy, to be transferred both to the small scales and to the large scales, in each case with a constant flux; (2) the existence of non-Gaussian wings in Probability Distribution Functions of kinetic, magnetic, and temperature fluctuations, together with their gradients, thus displaying large-scale as well as small-scale intermittency; and (3) the linear dependence on the control parameter of the effective dissipation in turbulence when non-linear eddies and waves interact. We shall briefly review these results with examples stemming from Solar Wind data, the atmosphere and the ocean with either magnetic fields, stratification, and/or rotation. In a second part, we shall examine numerically the inverse cascades of magnetic and of generalized helicity for Hall-MHD in the presence of forcing. These helical invariants in the ideal non-dissipative case involve various cross-correlations between the velocity and vorticity, the magnetic field, and the magnetic potential. For an ion inertial length larger than the forcing scale, the effect of the waves is significant. It leads to an exponential attenuation of the inverse cascade to large scales, since, through the velocity and vorticity, small scales play an increasing dynamical role for a strong Hall current.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00910096&limit=30&person=true&page=2&respub-action=search.html