Imperial College London

ProfessorJamesWare

Faculty of MedicineNational Heart & Lung Institute

Professor of Cardiovascular and Genomic Medicine
 
 
 
//

Contact

 

j.ware Website

 
 
//

Assistant

 

Ms Lisa Quinn +44 (0)20 7594 1345

 
//

Location

 

3 13GLMS BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

234 results found

Tayal U, Owen R, Buchan R, Halliday B, Lota AS, Jarman J, Baruah R, Ware JS, Barton PJ, Cleland J, Frenneaux M, Pennell DJ, Gregson J, Prasad SKet al., 2021, Biological Sex as a Modifier of the Natural History of Dilated Cardiomyopathy, Annual Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Lota AS, Meena D, Halliday B, Tayal U, Iacob A, Hammersley D, Jones R, Dehghan A, Tzoulaki I, Ware JS, Cleland J, Pennell DJ, Prasad SKet al., 2021, Impact of Covid-19 on Acute Myocarditis Hospital Admissions in the National Health Service of England, Uk (2019-2020), Annual Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Lota AS, Hazebroek M, Theotokis P, Wassall R, Salmi S, Halliday B, Tayal U, Verdonschot J, Meena D, de Marvao A, Iacob A, Hammersley D, Jones R, Wage R, Buchan R, Yazdani M, Noseda M, Mittal T, Wong J, Robertus JL, Baksi J, Vassiliou V, Tzoulaki Iet al., 2021, Genetic Overlap of Acute Myocarditis and Inherited Cardiomyopathy, Annual Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Stroeks SLVM, Hellebrekers DMEI, Claes GRF, Tayal U, Krapels IPC, Vanhoutte EK, van den Wijngaard A, Henkens MTHM, Ware JS, Heymans SRB, Brunner HG, Verdonschot JAJet al., 2021, Clinical impact of re-evaluating genes and variants implicated in dilated cardiomyopathy, Genetics in Medicine, Vol: 23, Pages: 2186-2193, ISSN: 1098-3600

PurposeAccurate interpretation of variants detected in dilated cardiomyopathy (DCM) is crucial for patient care but has proven challenging. We applied a set of proposed refined American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria for DCM, reclassified all detected variants in robust genes, and associated these results to patients' phenotype.MethodsThe study included 902 DCM probands from the Maastricht Cardiomyopathy Registry who underwent genetic testing. Two gene panel sizes (extended n = 48; and robust panel n = 14) and two standards of variant classification (standard versus the proposed refined ACMG/AMP criteria) were applied to compare genetic yield.ResultsA pathogenic or likely pathogenic (P/LP) variant was found in 17.8% of patients, and a variant of uncertain significance (VUS) was found in 32.8% of patients when using method 1 (extended panel (n = 48) + standard ACMG/AMP), compared to respectively 16.9% and 12.9% when using method 2 (robust panel (n = 14) + standard ACMG/AMP), and respectively 14% and 14.5% using method 3 (robust panel (n = 14) + refined ACMG/AMP). Patients with P/LP variants had significantly lower event-free survival compared to genotype-negative DCM patients.ConclusionStringent gene selection for DCM genetic testing reduced the number of VUS while retaining ability to detect similar P/LP variants. The number of genes on diagnostic panels should be limited to genes that have the highest signal to noise ratio.

Journal article

Hoorntje ET, Burns C, Marsili L, Corden B, Parikh VN, te Meerman GJ, Gray B, Adiyaman A, Bagnall RD, Barge-Schaapveld DQCM, van den Berg MP, Bootsma M, Bosman LP, Correnti G, Duflou J, Eppinga RN, Fatkin D, Fietz M, Haan E, Jongbloed JDH, Hauer AD, Lam L, van Lint FHM, Lota A, Marcelis C, McCarthy HJ, van Mil AM, Oldenburg RA, Pachter N, Planken RN, Reuter C, Semsarian C, van der Smagt JJ, Thompson T, Vohra J, Volders PGA, van Waning JI, Whiffin N, van den Wijngaard A, Amin AS, Wilde AAM, van Woerden G, Yeates L, Zentner D, Ashley EA, Wheeler MT, Ware JS, van Tintelen JP, Ingles Jet al., 2021, Variant location is a novel risk factor for individuals with arrhythmogenic cardiomyopathy due to a desmoplakin (<i>DSP</i>) truncating variant

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Truncating variants in desmoplakin (<jats:italic>DSP</jats:italic>tv) are an important cause of arrhythmogenic cardiomyopathy (ACM), however the genetic architecture and genotype-specific risk factors are incompletely understood. We evaluated phenotype, risk factors for ventricular arrhythmias, and underlying genetics of<jats:italic>DSP</jats:italic>tv cardiomyopathy.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Individuals with<jats:italic>DSP</jats:italic>tv and any cardiac phenotype, and their gene-positive family members were included from multiple international centers. Clinical data and family history information were collected. Event-free survival from ventricular arrhythmia was assessed. Variant location was compared between cases and controls, and literature review of reported<jats:italic>DSP</jats:italic>tv performed.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>There were 98 probands and 72 family members (mean age at diagnosis 43 ± 18 years, 59% female) with a<jats:italic>DSP</jats:italic>tv, of which 146 were considered clinically affected. Ventricular arrhythmia (sudden cardiac arrest, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy) occurred in 56 (33%) individuals.<jats:italic>DSP</jats:italic>tv location and proband status were independent risk factors for ventricular arrhythmia, while prior risk factors showed no association. Further, gene region was important with variants in cases (cohort n=98, Clinvar n=168) more likely to occur in the regions resulting in nonsense mediated decay of both major<jats:italic>DSP</jats:italic>isoforms, compared to n=124 gnomAD control variants

Working paper

De Marvao A, McGurk K, Zheng S, Thanaj M, Bai W, Duan J, Halliday B, Pantazis A, Prasad S, Rueckert D, Walsh R, Ho C, Cook S, Ware J, O'Regan Det al., 2021, Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes in over 200,000 adults, ESC Congress 2021, Publisher: European Society of Cardiology, Pages: 1731-1731, ISSN: 0195-668X

BackgroundHypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.PurposeTo determine the population prevalence of HCM-associated sarcomeric variants, characterise their phenotypic manifestations, estimate penetrance, and identify associations between sarcomeric variants and clinical outcomes, we performed an observational study of 218,813 adults in the UK Biobank (UKBB), of whom 200,584 have whole exome sequencing (WES).MethodsWe carried out an integrated analysis of WES and cardiac magnetic resonance (CMR) imaging in UK Biobank participants stratified by sarcomere-encoding variant status. Computer vision techniques were used to automatically segment the four chambers of the heart (Figure 1). Cardiac motion analysis was used to derive strain and strain rates. Regional analysis of left ventricular wall thickness was performed using three-dimensional modelling of these segmentations.ResultsMedian age at recruitment was 58 (IQR 50–63 years), and participants were followed up for a median of 10.8 years (IQR 9.9–11.6 years) with a total of 19,507 primary clinical events reported.The prevalence of rare variants (allele frequency <0.ehab724.17314) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n=5,727; 1 in 35), and the prevalence of pathogenic or likely pathogenic variants (SARC-P/LP) was 0.24% (n=474, 1 in 423).SARC-P/LP variants were associated with increased risk of death or major adverse cardiac events (MACE) compared to controls (HR 1.68, 95% CI 1.37–2.06, p<0.001), mainly due to heart failure endpoints (Figure 2: cumulative hazard curves with zoomed plots for lifetime risk of A) death and MACE or B) heart failure, stratified by genotype; genotype negative (SARC-NEG), carriers of indeterminate sarcomeric variants (SARC-IND) or SARC-P/LP; C) Forest plot of comparative lifetime risk of c

Conference paper

Nauffal V, Marstrand P, Han L, Parikh VN, Helms AS, Ingles J, Jacoby D, Lakdawala NK, Kapur S, Michels M, Owens AT, Ashley EA, Pereira AC, Rossano JW, Saberi S, Semsarian C, Ware JS, Wittekind SG, Day S, Olivotto I, Ho CYet al., 2021, Worldwide differences in primary prevention implantable cardioverter defibrillator utilization and outcomes in hypertrophic cardiomyopathy, European Heart Journal, Vol: 42, Pages: 3932-3944, ISSN: 0195-668X

Aims Risk stratification algorithms for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) and regional differences in clinical practice have evolved over time. We sought to compare primary prevention implantable cardioverter defibrillator (ICD) implantation rates and associated clinical outcomes in US vs. non-US tertiary HCM centres within the international Sarcomeric Human Cardiomyopathy Registry.Methods and resultsWe included patients with HCM enrolled from eight US sites (n = 2650) and five non-US (n = 2660) sites and used multivariable Cox-proportional hazards models to compare outcomes between sites. Primary prevention ICD implantation rates in US sites were two-fold higher than non-US sites (hazard ratio (HR) 2.27 [1.89–2.74]), including in individuals deemed at high 5-year SCD risk (≥6%) based on the HCM risk-SCD score (HR 3.27 [1.76–6.05]). US ICD recipients also had fewer traditional SCD risk factors. Among ICD recipients, rates of appropriate ICD therapy were significantly lower in US vs. non-US sites (HR 0.52 [0.28–0.97]). No significant difference was identified in the incidence of SCD/resuscitated cardiac arrest among non-recipients of ICDs in US vs. non-US sites (HR 1.21 [0.74–1.97]).Conclusion Primary prevention ICDs are implanted more frequently in patients with HCM in US vs. non-US sites across the spectrum of SCD risk. There was a lower rate of appropriate ICD therapy in US sites, consistent with a lower-risk population, and no significant difference in SCD in US vs. non-US patients who did not receive an ICD. Further studies are needed to understand what drives malignant arrhythmias, optimize ICD allocation, and examine the impact of different ICD utilization strategies on long-term outcomes in HCM.

Journal article

Nauffal V, Marstrand P, Han L, Parikh VN, Helms AS, Ingles J, Jacoby D, Lakdawala NK, Kapur S, Michels M, Owens AT, Ashley EA, Pereira AC, Rossano JW, Saberi S, Semsarian C, Ware JS, Wittekind SG, Day S, Olivotto I, Ho CYet al., 2021, Worldwide differences in primary prevention implantable cardioverter defibrillator utilization and outcomes in hypertrophic cardiomyopathy., Eur Heart J, Vol: 42, Pages: 3932-3944

AIMS: Risk stratification algorithms for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) and regional differences in clinical practice have evolved over time. We sought to compare primary prevention implantable cardioverter defibrillator (ICD) implantation rates and associated clinical outcomes in US vs. non-US tertiary HCM centres within the international Sarcomeric Human Cardiomyopathy Registry. METHODS AND RESULTS: We included patients with HCM enrolled from eight US sites (n = 2650) and five non-US (n = 2660) sites and used multivariable Cox-proportional hazards models to compare outcomes between sites. Primary prevention ICD implantation rates in US sites were two-fold higher than non-US sites (hazard ratio (HR) 2.27 [1.89-2.74]), including in individuals deemed at high 5-year SCD risk (≥6%) based on the HCM risk-SCD score (HR 3.27 [1.76-6.05]). US ICD recipients also had fewer traditional SCD risk factors. Among ICD recipients, rates of appropriate ICD therapy were significantly lower in US vs. non-US sites (HR 0.52 [0.28-0.97]). No significant difference was identified in the incidence of SCD/resuscitated cardiac arrest among non-recipients of ICDs in US vs. non-US sites (HR 1.21 [0.74-1.97]). CONCLUSION: Primary prevention ICDs are implanted more frequently in patients with HCM in US vs. non-US sites across the spectrum of SCD risk. There was a lower rate of appropriate ICD therapy in US sites, consistent with a lower-risk population, and no significant difference in SCD in US vs. non-US patients who did not receive an ICD. Further studies are needed to understand what drives malignant arrhythmias, optimize ICD allocation, and examine the impact of different ICD utilization strategies on long-term outcomes in HCM.

Journal article

Walsh R, Adler A, Amin AS, Abiusi E, Care M, Bikker H, Amenta S, Feilotter H, Nannenberg EA, Mazzarotto F, Trevisan V, Garcia J, Hershberger RE, Perez M, Sturm AC, Ware JS, Zareba W, Novelli V, Wilde AAM, Gollob MHet al., 2021, Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death, European Heart Journal, Vol: 00, Pages: 1-12, ISSN: 0195-668X

AimsCatecholaminergic polymorphic ventricular tachycardia (CPVT) and short QT syndrome (SQTS) are inherited arrhythmogenic disorders that can cause sudden death. Numerous genes have been reported to cause these conditions, but evidence supporting these gene–disease relationships varies considerably. To ensure appropriate utilization of genetic information for CPVT and SQTS patients, we applied an evidence-based reappraisal of previously reported genes.Methods and resultsThree teams independently curated all published evidence for 11 CPVT and 9 SQTS implicated genes using the ClinGen gene curation framework. The results were reviewed by a Channelopathy Expert Panel who provided the final classifications. Seven genes had definitive to moderate evidence for disease causation in CPVT, with either autosomal dominant (RYR2, CALM1, CALM2, CALM3) or autosomal recessive (CASQ2, TRDN, TECRL) inheritance. Three of the four disputed genes for CPVT (KCNJ2, PKP2, SCN5A) were deemed by the Expert Panel to be reported for phenotypes that were not representative of CPVT, while reported variants in a fourth gene (ANK2) were too common in the population to be disease-causing. For SQTS, only one gene (KCNH2) was classified as definitive, with three others (KCNQ1, KCNJ2, SLC4A3) having strong to moderate evidence. The majority of genetic evidence for SQTS genes was derived from very few variants (five in KCNJ2, two in KCNH2, one in KCNQ1/SLC4A3).ConclusionsSeven CPVT and four SQTS genes have valid evidence for disease causation and should be included in genetic testing panels. Additional genes associated with conditions that may mimic clinical features of CPVT/SQTS have potential utility for differential diagnosis.

Journal article

Simoes Monteiro de Marvao A, McGurk K, Zheng S, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes T, Savioli N, Halliday B, Xu X, Buchan R, Baksi A, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis A, Zhang X, Jang M, Berry A, Pantazis A, Barton P, Rueckert D, Prasad S, Walsh R, Ho C, Cook S, Ware J, O'Regan Det al., 2021, Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy, Journal of the American College of Cardiology, Vol: 78, Pages: 1097-1110, ISSN: 0735-1097

Background: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomereencoding genes, but little is known about the clinical significance of these variants in thegeneral population.Objectives: To compare lifetime outcomes and cardiovascular phenotypes according to thepresence of rare variants in sarcomere-encoding genes amongst middle-aged adults.Methods: We analysed whole exome sequencing and cardiac magnetic resonance (CMR)imaging in UK Biobank participants stratified by sarcomere-encoding variant status.Results: The prevalence of rare variants (allele frequency <0.00004) in HCM-associatedsarcomere-encoding genes in 200,584 participants was 2.9% (n=5,712; 1 in 35), and theprevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was0.25% (n=493, 1 in 407). SARC-HCM-P/LP variants were associated with increased risk ofdeath or major adverse cardiac events compared to controls (HR 1.69, 95% CI 1.38 to 2.07,p<0.001), mainly due to heart failure endpoints (HR 4.23, 95% CI 3.07 to 5.83, p<0.001). In21,322 participants with CMR, SARC-HCM-P/LP were associated with asymmetric increasein left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p<0.001) buthypertrophy (≥13mm) was only present in 18.4% (n=9/49, 95% CI 9 to 32%). SARC-HCMP/LP were still associated with heart failure after adjustment for wall thickness (HR 6.74,95% CI 2.43 to 18.7, p<0.001).Conclusions: In this population of middle-aged adults, SARC-HCM-P/LP variants have lowaggregate penetrance for overt HCM but are associated with increased risk of adversecardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absoluteevent rates are low, identification of these variants may enhance risk stratification beyondfamilial disease.

Journal article

Francis CM, Futschik ME, Huang J, Bai W, Sargurupremraj M, Petretto E, Ho ASR, Amouyel P, Engelter ST, Ware JS, Debette S, Elliott P, Dehghan A, Matthews PMet al., 2021, GENOME-WIDE ASSOCIATIONS OF AORTIC DISTENSIBILITY SUGGEST CAUSAL RELATIONSHIPS WITH AORTIC ANEURYSMS AND BRAIN WHITE MATTER HYPERINTENSITIES

<jats:title>ABSTRACT</jats:title><jats:p>Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We tested genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identified 102 loci (including 31 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases. Functional analyses highlighted four signalling pathways associated with aortic distensibility (TGF-β, IGF, VEGF and PDGF). We identified distinct sex-specific associations with aortic traits. We developed co-expression networks associated with aortic traits and applied phenome-wide Mendelian randomization (MR-PheWAS), generating evidence for a causal role for aortic distensibility in development of aortic aneurysms. Multivariable MR suggested a causal relationship between aortic distensibility and cerebral white matter hyperintensities, mechanistically linking aortic traits and brain small vessel disease.</jats:p>

Working paper

Aguib Y, Allouba M, Walsh R, Ibrahim AM, Halawa S, Afify A, Hosny M, Theotokis PI, Galal A, Elshorbagy S, Roshdy M, Kassem HS, Ellithy A, Buchan R, Whiffin N, Anwer S, Cook S, Moustafa A, ElGuindy A, Ware J, Barton P, Yacoub Met al., 2021, New variant with a previously unrecognized mechanism of pathogenicity in hypertrophic cardiomyopathy, Circulation, Vol: 144, Pages: 754-757, ISSN: 0009-7322

Journal article

Gudmundsson S, Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DGet al., 2021, The mutational constraint spectrum quantified from variation in 141,456 humans (vol 581, pg 434, 2020), Nature, Vol: 597, Pages: E3-E4, ISSN: 0028-0836

Journal article

Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, Celeghin R, Edwards M, Fan J, Ingles J, James CA, Jarinova O, Johnson R, Judge DP, Lahrouchi N, Lekanne Deprez RH, Lumbers RT, Mazzarotto F, Medeiros Domingo A, Miller RL, Morales A, Murray B, Peters S, Pilichou K, Protonotarios A, Semsarian C, Shah P, Syrris P, Thaxton C, van Tintelen JP, Walsh R, Wang J, Ware J, Hershberger REet al., 2021, An evidence-based assessment of genes in dilated cardiomyopathy, Circulation, Vol: 144, Pages: 7-19, ISSN: 0009-7322

Background: The cardiomyopathies, classically categorized as hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular (ARVC), each have a signature genetic theme. HCM and ARVC are largely understood as genetic diseases of sarcomere or desmosome proteins, respectively. In contrast, >250 genes spanning more than 10 gene ontologies have been implicated in DCM, representing a complex and diverse genetic architecture. To clarify this, a systematic curation of evidence to establish the relationship of genes with DCM was conducted.Methods: An international Panel with clinical and scientific expertise in DCM genetics evaluated evidence supporting monogenic relationships of genes with idiopathic DCM. The Panel utilized the ClinGen semi-quantitative gene-disease clinical validity classification framework with modifications for DCM genetics to classify genes into categories based on the strength of currently available evidence. Representation of DCM genes on clinically available genetic testing panels was evaluated.Results: Fifty-one genes with human genetic evidence were curated. Twelve genes (23%) from eight gene ontologies were classified as having definitive (BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN) or strong (DSP) evidence. Seven genes (14%) (ACTC1, ACTN2, JPH2, NEXN, TNNI3, TPM1, VCL) including two additional ontologies were classified as moderate evidence; these genes are likely to emerge as strong or definitive with additional evidence. Of these 19 genes, six were similarly classified for HCM and three for ARVC. Of the remaining 32 genes (63%), 25 (49%) had limited evidence, 4 (8%) were disputed, 2 (4%) had no disease relationship, and 1 (2%) was supported by animal model data only. Of 16 evaluated clinical genetic testing panels, most definitive genes were included, but panels also included numerous genes with minimal human evidence.Conclusions: In the curation of 51 genes, 19 had high evidence (12 definitive/strong; seven m

Journal article

Cubuk C, Garrett A, Choi S, King L, Loveday C, Torr B, Burghel GJ, Durkie M, Callaway A, Robinson R, Drummond J, Berry I, Wallace A, Eccles D, Tischkowitz M, Whiffin N, Ware JS, Hanson H, Turnbull C, CanVIG-Uket al., 2021, Clinical likelihood ratios and balanced accuracy for 44 in silico tools against multiple large-scale functional assays of cancer susceptibility genes, Genetics in Medicine, Vol: 23, Pages: 2096-2104, ISSN: 1098-3600

Purpose:Where multiple in silico tools are concordant, the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) framework affords supporting evidence toward pathogenicity or benignity, equivalent to a likelihood ratio of ~2. However, limited availability of “clinical truth sets” and prior use in tool training limits their utility for evaluation of tool performance.Methods:We created a truth set of 9,436 missense variants classified as deleterious or tolerated in clinically validated high-throughput functional assays for BRCA1, BRCA2, MSH2, PTEN, and TP53 to evaluate predictive performance for 44 recommended/commonly used in silico tools.Results:Over two-thirds of the tool–threshold combinations examined had specificity of <50%, thus substantially overcalling deleteriousness. REVEL scores of 0.8–1.0 had a Positive Likelihood Ratio (PLR) of 6.74 (5.24–8.82) compared to scores <0.7 and scores of 0–0.4 had a Negative Likelihood Ratio (NLR) of 34.3 (31.5–37.3) compared to scores of >0.7. For Meta-SNP, the equivalent PLR = 42.9 (14.4–406) and NLR = 19.4 (15.6–24.9).Conclusion:Against these clinically validated “functional truth sets," there was wide variation in the predictive performance of commonly used in silico tools. Overall, REVEL and Meta-SNP had best balanced accuracy and might potentially be used at stronger evidence weighting than current ACMG/AMP prescription, in particular for predictions of benignity.

Journal article

Patel K, Li X, Quint J, Ware J, Peters N, Ng FSet al., 2021, Increasing adiposity and the presence of cardiometabolic morbidity is associated with increased Covid-19-related mortality: results from the UK Biobank, BMC Endocrine Disorders, Vol: 21, Pages: 1-6, ISSN: 1472-6823

Background: Although obesity, defined by body mass index (BMI), has been associated with a higher risk of hospitalisation and more severe course of illness in Covid-19 positive patients amongst the British population, it is unclear if this translates into increased mortality. Furthermore, given that BMI is an insensitive indicator of adiposity, the effect of adipose volume on Covid-19 outcomes is also unknown. Methods: We used the UK Biobank repository, which contains clinical and anthropometric data, and is linked to Public Health England Covid-19 healthcare records, to address our research question. We performed age- and sex- adjusted logistic regression and Chi-squared test to compute the odds for Covid-19-related mortality as a consequence of increasing BMI, other more sensitive indices of adiposity such as waist:hip ratio (WHR) and percent body fat, as well as concomitant cardiometabolic illness.Results: 13502 participants were tested for Covid-19 (mean age 70+8 years, 48.9% male). 1,582 tested positive (mean age 68+9 years, 52.8% male), of which 305 died (mean age 75+6 years, 65.5% male). Increasing adiposity was associated with higher odds for Covid-19-related mortality. For every unit increase in BMI, WHR and percent body fat, the odds of death amongst the Covid19-positive participants increased by 1.04 (95% CI 1.01-1.07), 10.71 (95% CI 1.57-73.06) and 1.03 (95% CI 1.01-1.05), respectively (all p<0.05). Referenced to Covid-19 positive participants with a normal weight (BMI 18.5-25kg/m2), Covid-19 positive participants with BMI>35kg/m2 had significantly higher odds of Covid-19-related death (OR 1.70, 95% CI 1.06-2.74, p<0.05). Covid-19-positive participants with metabolic (diabetes, hypertension, dyslipidaemia) or cardiovascular morbidity (atrial fibrillation, angina) also had higher odds of death.Conclusions: Anthropometric indices that are more sensitive to adipose volume and its distribution than BMI, as well as concurrent cardiometabolic illnes

Journal article

Thompson AD, Helms AS, Kannan A, Yob J, Lakdawala NK, Wittekind SG, Pereira AC, Jacoby DL, Colan SD, Ashley EA, Saberi S, Ware JS, Ingles J, Semsarian C, Michels M, Mazzarotto F, Olivotto I, Ho CY, Day SMet al., 2021, Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation, Genetics in Medicine, Vol: 23, Pages: 1281-1287, ISSN: 1098-3600

Purpose: Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk.Methods: Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS.Results: We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding.Conclusion: STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity.

Journal article

Tayal U, Ware JS, Lakdawala NK, Heymans S, Prasad SKet al., 2021, Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know., European Heart Journal, Vol: 42, Pages: 2384-2396, ISSN: 0195-668X

There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field.

Journal article

Thanaj M, Mielke J, McGurk KA, Bai W, Savioli N, de Marvao A, Meyer HV, Zeng L, Sohler F, Wilkins MR, Ware JS, Bender C, Rueckert D, MacNamara A, Freitag DF, ORegan DPet al., 2021, Genetic and environmental determinants of diastolic heart function

<jats:title>ABSTRACT</jats:title><jats:p>Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between ventricular stiffness and heart failure. Our results provide novel insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and tractable targets in heart failure.</jats:p>

Working paper

Marston NA, Han L, Olivotto I, Day SM, Ashley EA, Michels M, Pereira AC, Ingles J, Semsarian C, Jacoby D, Colan SD, Rossano JW, Wittekind SG, Ware JS, Saberi S, Helms AS, Ho CYet al., 2021, Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy, European Heart Journal, Vol: 42, ISSN: 0195-668X

AimsChildhood-onset hypertrophic cardiomyopathy (HCM) is far less common than adult-onset disease, thus natural history is not well characterized. We aim to describe the characteristics and outcomes of childhood-onset HCM.Methods and resultsWe performed an observational cohort study of 7677 HCM patients from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Hypertrophic cardiomyopathy patients were stratified by age at diagnosis [<1 year (infancy), 1–18 years (childhood), >18 years (adulthood)] and assessed for composite endpoints reflecting heart failure (HF), life-threatening ventricular arrhythmias, atrial fibrillation (AF), and an overall composite that also included stroke and death. Stratifying by age of diagnosis, 184 (2.4%) patients were diagnosed in infancy; 1128 (14.7%) in childhood; and 6365 (82.9%) in adulthood. Childhood-onset HCM patients had an ∼2%/year event rate for the overall composite endpoint, with ventricular arrhythmias representing the most common event in the 1st decade following baseline visit, but HF and AF becoming more common by the end of the 2nd decade. Sarcomeric variants were more common in childhood-onset HCM (63%) and carried a worse prognosis than non-sarcomeric disease, including a greater than two-fold increased risk of HF [HRadj 2.39 (1.36–4.20), P = 0.003] and 67% increased risk of the overall composite outcome [HRadj 1.67 (1.16–2.41), P = 0.006]. When compared with adult-onset HCM, childhood-onset was 36% more likely to develop life-threatening ventricular arrhythmias [HRadj 1.36 (1.03–1.80)] and twice as likely to require transplant or ventricular assist device [HRadj 1.99 (1.23–3.23)].ConclusionPatients with childhood-onset HCM are more likely to have sarcomeric disease, carry a higher risk of life-threatening ventricular arrythmias, and have greater need for advanced HF therapies. These findings provide insight into the natural history of disease and can help inform clinical risk

Journal article

Tayal U, Fecht D, Chadeau-Hyam M, Owen R, Gregson J, Halliday B, Lota A, Gulliver J, Ware J, Pennell D, Kelly F, Shah A, Miller M, Newby D, Prasad Set al., 2021, Air pollution and adverse cardiac remodelling in patients with dilated cardiomyopathy, 70th Annual Scientific Session and Expo of the American-College-of-Cardiology (ACC), Publisher: Elsevier, Pages: 600-600, ISSN: 0735-1097

Conference paper

Zhang X, Wakeling M, Ware J, Whiffin Net al., 2021, Annotating high-impact 5'untranslated region variants with the UTRannotator, Bioinformatics, Vol: 37, Pages: 1171-1173, ISSN: 1367-4803

SUMMARY: Current tools to annotate the predicted effect of genetic variants are heavily biased towards protein-coding sequence. Variants outside of these regions may have a large impact on protein expression and/or structure and can lead to disease, but this effect can be challenging to predict. Consequently, these variants are poorly annotated using standard tools. We have developed a plugin to the Ensembl Variant Effect Predictor, the UTRannotator, that annotates variants in 5'untranslated regions (5'UTR) that create or disrupt upstream open reading frames (uORFs). We investigate the utility of this tool using the ClinVar database, providing an annotation for 31.9% of all 5'UTR (likely) pathogenic variants, and highlighting 31 variants of uncertain significance as candidates for further follow-up. We will continue to update the UTRannotator as we gain new knowledge on the impact of variants in UTRs. AVAILABILITY AND IMPLEMENTATION: UTRannotator is freely available on Github: https://github.com/ImperialCardioGenetics/UTRannotator. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Journal article

Tijsen AJ, Cócera Ortega L, Reckman YJ, Zhang X, van der Made I, Aufiero S, Li J, Kamps SC, van den Bout A, Devalla HD, van Spaendonck-Zwarts K, Engelhardt S, Gepstein L, Ware JS, Pinto YMet al., 2021, Titin circular RNAs create a back-splice motif essential for SRSF10 splicing, Circulation, Vol: 143, Pages: 1502-1512, ISSN: 0009-7322

Background: Titin (TTN), the largest protein in humans, forms the molecular spring that spans half of the sarcomere to provide passive elasticity to the cardiomyocyte. Mutations that disrupt the TTN transcript are the most frequent cause of hereditary heart failure. We showed before that TTN produces a class of circular RNAs (circRNAs) that depend on RBM20 to be formed. In this study we show that the backsplice junction formed by this class of circRNAs creates a unique motif, which binds SRSF10 to enable it to regulate splicing. Furthermore, we show that one of these circRNAs (cTTN1) distorts both localization of and splicing by RBM20. Methods: We calculated genetic constraint of the identified motif in 125.748 exomes collected from the gnomAD database. Furthermore, we focused on the highest expressed RBM20-dependent circRNA in the human heart, which we named cTTN1. We used shRNAs directed to the backsplice junction to induce selective loss of cTTN1 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Results: Human genetics suggests reduced genetic tolerance of the generated motif, indicating that mutations in this motif might lead to disease. RNA immunoprecipitation confirmed binding of circRNAs with this motif to SRSF10. Selective loss of cTTN1 in hiPSC-CM induced structural abnormalities, apoptosis and reduced contractile force in engineered heart tissue. In line with its SRSF10 binding, loss of cTTN1 caused abnormal splicing of important cardiomyocyte SRSF10 targets like MEF2A and CASQ2. Strikingly, loss of cTTN1 also caused abnormal splicing of TTN itself. Mechanistically, we show that loss of cTTN1 distorts both localization of and splicing by RBM20. Conclusions: We demonstrate that circRNAs formed from the TTN transcript are essential for normal splicing of key muscle genes by enabling splice regulators RBM20 and SRSF10. This shows that the TTN transcript also has regulatory roles, besides its well-known signaling and structural function

Journal article

DiStefano M, Goehringer S, Amberger J, Tse CA, Balzotti M, Berg J, Birney E, Bocchini C, Bruford E, Coffey A, Collins H, Cunningham F, Firth H, Fitzpatrick D, Goldstein J, Hamosh A, Hurles M, Leigh S, Leong I, Martin C, McDonagh E, Puzriakova A, Olry A, Rath A, Roberts A, Radtke K, Ramos E, Riggs E, Rodwell C, Snow C, Stark Z, Tahiliani J, Ware J, Williams E, Wright C, Yates M, Rehm Het al., 2021, Launch of the gene curation coalition database, Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE, Pages: S224-S225, ISSN: 1096-7192

Conference paper

King L, Loveday C, Garrett A, Butler S, Robinson R, Maher E, Buffet A, Burnichon N, Gimenez-Roqueplo A-P, Choi S, Durkie M, Burghel G, Drummond J, Berry I, Wallace A, Woodward E, Izatt L, Tischkowitz M, Whiffin N, Ware J, Hanson H, Turnbull Cet al., 2021, Quantitative evidence evaluation for singleton rare missense variants in rare distinctive adult-onset phenotypes: the exemplar of SDHB and SDHD, Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE, Pages: S37-S37, ISSN: 1096-7192

Conference paper

Lakdawala NK, Olivotto I, Day SM, Han L, Ashley EA, Michels M, Ingles J, Semsarian C, Jacoby D, Jefferies JL, Colan SD, Pereira AC, Rossano JW, Wittekind S, Ware JS, Saberi S, Helms AS, Cirino AL, Leinwand LA, Seidman CE, Ho CYet al., 2021, Associations between female sex, sarcomere variants and clinical outcomes in hypertrophic cardiomyopathy, Circulation: Genomic and Precision Medicine, Vol: 14, ISSN: 2574-8300

Background - The impact of sex on phenotypic expression in hypertrophic cardiomyopathy (HCM) has not been well characterized in genotyped cohorts. Methods - Retrospective cohort study from an international registry of patients receiving care at experienced HCM centers. Sex-based differences in baseline characteristics and clinical outcomes were assessed. Results - Of 5,873 patients (3,788 genotyped), 2,226 (37.9%) were women. At baseline, women were older (49.0±19.9 vs. 42.9±18.4 years, p<0.001) and more likely to have pathogenic/likely-pathogenic sarcomeric variants (SARC+; 51% vs 43%, p<0.001) despite equivalent utilization of genetic testing. Age at diagnosis varied by sex and genotype despite similar distribution of causal genes. Women were 3.6 to 7.1 years older at diagnosis (p<0.02) except for patients with MYH7 variants where age at diagnosis was comparable for women and men (n=492; 34.8±19.2 vs 33.3±16.8 years, p=0.39). Over 7.7 median years of follow up, NYHA III-IV heart failure (HF) was more common in women (HR 1.87, CI 1.48-2.36, p<0.001), after controlling for their higher burden of symptoms and outflow tract obstruction at baseline, reduced ejection fraction, SARC+, age and hypertension. All-cause mortality was increased in women (HR 1.50, CI 1.13-1.99, p<0.01), but neither ICD utilization nor ventricular arrhythmia varied by sex. Conclusions - In HCM, women are older at diagnosis, partly modified by genetic substrate. Regardless of genotype, women were at higher risk of mortality and developing severe HF symptoms. This points to a sex-effect on long-term myocardial performance in HCM, which should be investigated further.

Journal article

Tadros R, Francis C, Xu X, Vermeer AMC, Harper AR, Huurman R, Bisabu KK, Walsh R, Hoorntje ET, te Rijdt WP, Buchan RJ, van Velzen HG, van Slegtenhorst MA, Vermeulen JM, Offerhaus JA, Bai W, de Marvao A, Lahrouchi N, Beekman L, Karper JC, Veldink JH, Kayvanpour E, Pantazis A, Baksi AJ, Whiffin N, Mazzarotto F, Sloane G, Suzuki H, Schneider-Luftman D, Elliott P, Richard P, Ader F, Villard E, Lichtner P, Meitinger T, Tanck MWT, van Tintelen JP, Thain A, McCarty D, Hegele RA, Roberts JD, Amyot J, Dube M-P, Cadrin-Tourigny J, Giraldeau G, L'Allier PL, Garceau P, Tardif J-C, Boekholdt SM, Lumbers RT, Asselbergs FW, Barton PJR, Cook SA, Prasad SK, O'Regan DP, van der Velden J, Verweij KJH, Talajic M, Lettre G, Pinto YM, Meder B, Charron P, de Boer RA, Christiaans I, Michels M, Wilde AAM, Watkins H, Matthews PM, Ware JS, Bezzina CRet al., 2021, Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, NATURE GENETICS, Vol: 53, Pages: 128-+, ISSN: 1061-4036

Journal article

Morales A, Ing A, Antolik C, Austin-Tse C, Baudhuin LM, Bronicki L, Cirino A, Hawley MH, Fietz M, Garcia J, Ho C, Ingles J, Jarinova O, Johnston T, Kelly MA, Kurtz CL, Lebo M, Macaya D, Mahanta L, Maleszewski J, Manrai AK, Murray M, Richard G, Semsarian C, Thomson KL, Winder T, Ware JS, Hershberger RE, Funke BH, Vatta Met al., 2021, Harmonizing the Collection of Clinical Data on Genetic Testing Requisition Forms to Enhance Variant Interpretation in Hypertrophic Cardiomyopathy (HCM): A Study from the ClinGen Cardiomyopathy Variant Curation Expert Panel, The Journal of Molecular Diagnostics, Vol: 23, Pages: 589-598, ISSN: 1525-1578

Diagnostic laboratories gather phenotypic data through requisition forms, but there is no consensus as to which data are essential for variant interpretation. The ClinGen Cardiomyopathy Variant Curation Expert Panel defined a phenotypic data set for hypertrophic cardiomyopathy (HCM) variant interpretation, with the goal of standardizing requisition forms. Phenotypic data elements listed on requisition forms from nine leading cardiomyopathy testing laboratories were compiled to assess divergence in data collection. A pilot of 50 HCM cases was implemented to determine the feasibility of harmonizing data collection. Laboratory directors were surveyed to gauge potential for adoption of a minimal data set. Wide divergence was observed in the phenotypic data fields in requisition forms. The 50-case pilot showed that although demographics and assertion of a clinical diagnosis of HCM had 86% to 98% completion, specific phenotypic features, such as degree of left ventricular hypertrophy, ejection fraction, and suspected syndromic disease, were completed only 24% to 44% of the time. Nine data elements were deemed essential for variant classification by the expert panel. Participating laboratories unanimously expressed a willingness to adopt these data elements in their requisition forms. This study demonstrates the value of comparing and sharing best practices through an expert group, such as the ClinGen Program, to enhance variant interpretation, providing a foundation for leveraging cumulative case-level data in public databases and ultimately improving patient care.

Journal article

Balaban G, Halliday B, Bradley P, Bai W, Nygaard S, Owen R, Hatipoglu S, Ferreira ND, Izgi C, Tayal U, Corden B, Ware J, Pennell D, Rueckert D, Plank G, Rinaldi CA, Prasad SK, Bishop Met al., 2021, Late-gadolinium enhancement interface area and electrophysiological simulations predict arrhythmic events in non-ischemic dilated cardiomyopathy patients, JACC: Clinical Electrophysiology, Vol: 7, Pages: 238-249, ISSN: 2405-5018

BACKGROUND: The presence of late-gadolinium enhancement (LGE) predicts life threatening ventricular arrhythmias in non-ischemic dilated cardiomyopathy (NIDCM); however, risk stratification remains imprecise. LGE shape and simulations of electrical activity may be able to provide additional prognostic information.OBJECTIVE: This study sought to investigate whether shape-based LGE metrics and simulations of reentrant electrical activity are associated with arrhythmic events in NIDCM patients.METHODS: CMR-LGE shape metrics were computed for a cohort of 156 NIDCM patients with visible LGE and tested retrospectively for an association with an arrhythmic composite end-point of sudden cardiac death and ventricular tachycardia. Computational models were created from images and used in conjunction with simulated stimulation protocols to assess the potential for reentry induction in each patient’s scar morphology. A mechanistic analysis of the simulations was carried out to explain the associations. RESULTS: During a median follow-up of 1611 [IQR 881-2341] days, 16 patients (10.3%) met the primary endpoint. In an inverse probability weighted Cox regression, the LGE-myocardial interface area (HR:1.75; 95% CI:1.24-2.47; p=0.001), number of simulated reentries (HR: 1.4; 95% CI: 1.23-1.59; p<0.01) and LGE volume (HR:1.44; 95% CI:1.07-1.94; p=0.02) were associated with arrhythmic events. Computational modeling revealed repolarisation heterogeneity and rate-dependent block of electrical wavefronts at the LGE-myocardial interface as putative arrhythmogenic mechanisms directly related to LGE interface area.CONCLUSION: The area of interface between scar and surviving myocardium, as well as simulated reentrant activity, are associated with an elevated risk of major arrhythmic events in NIDCM patients with LGE and represent novel risk predictors.

Journal article

Mazzarotto F, Hawley MH, Beltrami M, Beekman L, De Marvao A, McGurk K, Statton B, Boschi B, Girolami F, Roberts AM, Lodder EM, Allouba M, Romeih S, Aguib Y, Baksi J, Pantazis A, Prasad SK, Cerbai E, Yacoub M, O'Regan D, Cook S, Ware J, Funke B, Olivotto I, Bezzina C, Barton P, Walsh Ret al., 2021, Systematic large-scale assessment of the genetic architecture of left ventricular non-compaction reveals diverse aetiologies, Genetics in Medicine, Vol: 23, Pages: 856-864, ISSN: 1098-3600

Purpose: To characterise the genetic architecture of left ventricular non-compaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases.Methods: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Results: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants (TV) in MYH7, ACTN2 and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC aetiology. In particular, MYH7 TV, generally considered non-pathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7 TV heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater non-compaction compared to matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes.Conclusions: LVNC is characterised by substantial genetic overlap with DCM/HCM but is also associated with distinct non-compaction and arrhythmia aetiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological non-compaction.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00539788&limit=30&person=true&page=3&respub-action=search.html