Imperial College London

DrJacquesBehmoaras

Faculty of MedicineDepartment of Immunology and Inflammation

Reader in Immunogenetics
 
 
 
//

Contact

 

+44 (0)20 3313 2339jacques.behmoaras Website

 
 
//

Location

 

9N13Commonwealth BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

74 results found

Chen H, You R, Guo J, Zhou W, Chew G, Devapragash N, Loh JZ, Gesualdo L, Li Y, Jiang Y, Sa Tan EL, Chen S, Pontrelli P, Pesce F, Behmoaras J, Zhang A, Petretto Eet al., 2024, WWP2 Regulates Kidney Fibrosis and the Metabolic Reprogramming of Profibrotic Myofibroblasts., J Am Soc Nephrol

BACKGROUND: Renal fibrosis is a common pathological endpoint in CKD that is challenging to reverse, and myofibroblasts are responsible for the accumulation of a fibrillar collagen-rich extracellular matrix (ECM). Recent studies have unveiled myofibroblasts diversity in terms of proliferative and fibrotic characteristics, which are linked to different metabolic states. We previously demonstrated the regulation of ECM genes and tissue fibrosis by WWP2, a multifunctional E3 ubiquitin-protein ligase. Here, we investigate WWP2 in renal fibrosis and in the metabolic reprograming of myofibroblasts in CKD. METHODS: We used kidney samples from CKD patients and WWP2 -null kidney disease mice models, and leveraged single cell RNA-seq analysis to detail the cell-specific regulation of WWP2 in fibrotic kidneys. Experiments in primary cultured myofibroblasts by bulk-RNA seq, ChIP-seq, metabolomics and cellular metabolism assays, were used to study the metabolic regulation of WWP2 and its downstream signaling. RESULTS: The tubulointerstitial expression of WWP2 was associated with fibrotic progression in CKD patients and in murine kidney disease models. WWP2 deficiency promoted myofibroblast proliferation and halts pro-fibrotic activation, reducing the severity of kidney fibrosis in vivo . In renal myofibroblasts, WWP2 deficiency increased fatty acid oxidation and activated the pentose phosphate pathway, boosting mitochondrial respiration at the expense of glycolysis. WWP2 suppressed the transcription of PGC-1α, a metabolic mediator of fibrotic response, and pharmacological inhibition of PGC-1α partially abrogated the protective effects of WWP2 deficiency on myofibroblasts. CONCLUSIONS: WWP2 regulates the metabolic reprogramming of profibrotic myofibroblasts by a WWP2-PGC-1α axis, and WWP2 deficiency protects against kidney fibrosis in CKD.

Journal article

Ouyang JF, Mishra K, Xie Y, Park H, Huang KY, Petretto E, Behmoaras Jet al., 2023, Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis., Elife, Vol: 12

Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1) associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single-cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin, and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarisation state within SPP1+ macrophages. Importantly, the MAM polarisation state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarisation state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarisation state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.

Journal article

Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko J-H, Mitera T, Maksoudian C, Manshian BB, Soenen S, Rose CD, Matthys P, Wouters C, Behmoaras Jet al., 2023, Multinucleation resets human macrophages for specialized functions at the expense of their identity (vol 24, e56310, 2023), EMBO REPORTS, Vol: 24, ISSN: 1469-221X

Journal article

Behmoaras J, 2023, Multinucleation resets human macrophages for specialized functions at the expense of their identity, EMBO Reports, Vol: 24, Pages: 1-19, ISSN: 1469-221X

Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell–cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.

Journal article

Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto Eet al., 2022, The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis, Nature Communications, Vol: 13, ISSN: 2041-1723

Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.

Journal article

Ben-Aicha S, Anwar M, Punjabi P, Behmoaras J, Emanueli Cet al., 2022, Human macrophages are immunoprofiled by pericardial fluid small extracellular vesicles modulating lipid metabolism mechanisms, Publisher: OXFORD UNIV PRESS, Pages: 3030-3030, ISSN: 0195-668X

Conference paper

Behmoaras J, 2022, Immunolipidomics reveals a globoside network during the resolution of pro-inflammatory response in human macrophages, Frontiers in Immunology, Vol: 13, ISSN: 1664-3224

Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CEs levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.

Journal article

Ben-Aicha S, Anwar M, Punjabi P, Behmoaras J, Emanueli Cet al., 2022, Human pericardial fluid exosomes regulate macrophage immunophenotype: new prospective for cardiovascular immune response in coronary artery disease, Publisher: OXFORD UNIV PRESS, ISSN: 0008-6363

Conference paper

Ben-Aicha S, Anwar M, Punjabi P, Behmoaras J, Emanueli Cet al., 2022, HUMAN MACROPHAGES ARE IMMUNOPROFILED BY PERICARDIAL FLUID SMALL EXTRACELLULAR VESICLES MODULATING LIPID METABOLISM MECHANISMS, Publisher: BMJ PUBLISHING GROUP, Pages: A160-A161, ISSN: 1355-6037

Conference paper

Olona A, Hateley C, Guerrero A, Ko J-H, Johnson MR, Anand PK, Thomas D, Gil J, Behmoaras Jet al., 2022, Cardiac glycosides cause cytotoxicity in human macrophages and ameliorate white adipose tissue homeostasis, British Journal of Pharmacology, Vol: 179, Pages: 1874-1886, ISSN: 0007-1188

Background and purpose: Cardiac glycosides (CGs) inhibit the Na+,K+‐ATPase and are widely prescribed medicines for chronic heart failure and cardiac arrhythmias. Recently, CGs have been described to induce inflammasome activation and pyroptosis in human macrophages, suggesting a cytotoxicity that remains to be elucidated in tissues.Experimental approach: To determine the cell type specificity of CG‐mediated cytotoxicity, we used human primary monocyte‐derived macrophages (hMDMs) and non‐adherent peripheral blood cells isolated from healthy donors. Omental white adipose tissue (WAT) and stromal vascular fraction (SVF)‐derived pre‐adipocytes and adipocytes were isolated from obese patients undergoing bariatric surgery. All these primary cells/tissues were treated with nanomolar concentrations of ouabain (50nM, 100nM and 500nM) to investigate its degree of cytotoxicity and mechanisms leading to cell death. In WAT, we further explored the consequences of ouabain‐mediated cytotoxicity by measuring insulin sensitivity, adipose tissue function and extracellular matrix (ECM) deposition ex vivo.Key results: The ouabain‐induced cell death is through pyroptosis and apoptosis, and more efficient in hMDMs compared to non‐adherent PBMC populations. This selective cytotoxicity is dependent on K+ flux, as ouabain causes an intracellular depletion of K+, while inducing accumulation of Na+ and Ca2+ levels. Consistently, the cell‐death caused by these ion imbalances can be rescued by addition of potassium chloride in hMDMs. Remarkably, when WAT explants from obese patients are cultured with nanomolar concentrations of ouabain, this causes depletion of macrophages, down‐regulation of type VI collagen levels, and amelioration of insulin sensitivity ex vivo.Conclusions and implications: These results suggest that the usage of nanomolar concentration of CGs can be an attractive therapeutic avenue in metabolic syndrome characterised by pathogenic infiltration and activation of macrophages.

Journal article

Prendecki M, McAdoo SP, Turner-Stokes T, Garcia-Diaz A, Orriss I, Woollard KJ, Behmoaras J, Cook HT, Unwin R, Pusey CD, Aitman TJ, Tam FWKet al., 2022, Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways., Journal of Pathology, Vol: 257, ISSN: 0022-3417

P2RX7, an ionotropic receptor for extracellular ATP, is expressed on immune cells, including macrophages, monocytes and dendritic cells and is up-regulated on non-immune cells following injury. P2RX7 plays a role in many biological processes, including production of pro-inflammatory cytokines such as IL-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knock-out (KO) inbred rat strain and taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identify a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. This article is protected by copyright. All rights reserved.

Journal article

Behmoaras J, 2021, Sphingolipid metabolism during TLR4-mediated macrophage activation, British Journal of Pharmacology, Vol: 178, Pages: 4575-4587, ISSN: 0007-1188

Macrophage activation in response to stimulation of Toll-like receptor 4 (TLR4) provides a paradigm for investigating energy metabolism that regulate the inflammatory response. TLR4-mediated pro-inflammatory macrophage activation is characterised by increased glycolysis and altered mitochondrial metabolism, supported by selective amino acid uptake and/or usage. Fatty acid metabolism remains as a highly complex rewiring that accompany classical macrophage activation. TLR4 activation leads to de novo synthesis of fatty acids, which flux into sphingolipids, complex lipids that form the building blocks of eukaryotic cell membranes and regulate cell function. Here we review the importance of TLR4-mediated de novo synthesis of membrane sphingolipids in macrophages. We first highlight fatty acid metabolism during TLR4-driven macrophage immunometabolism. We then focus on the temporal dynamics of sphingolipid biosynthesis and emphasise the modulatory role of some sphingolipid species (i.e. sphingomyelins, ceramides and glycosphingolipids) on the pro-inflammatory and pro-resolution phases of LPS/TLR4 activation in macrophages.

Journal article

Behmoaras J, 2021, Adipoclast: a multinucleated fat-eating macrophage, BMC Biology, Vol: 19, Pages: 1-10, ISSN: 1741-7007

Cell membrane fusion and multinucleation in macrophages are associated with physiologic homeostasis as well as disease. Osteoclasts are multinucleated macrophages that resorb bone through increased metabolic activity resulting from cell fusion. Fusion of macrophages also generates multinucleated giant cells (MGCs) in white adipose tissue (WAT) of obese individuals. For years, our knowledge of MGCs in WAT has been limited to their description as part of crown-like structures (CLS) surrounding damaged adipocytes. However, recent evidence indicates that these cells can phagocytose oversized lipid remnants, suggesting that, as in osteoclasts, cell fusion and multinucleation are required for specialized catabolic functions. We thus reason that WAT MGCs can be viewed as functionally analogous to osteoclasts and refer to them in this article as adipoclasts. We first review current knowledge on adipoclasts and their described functions. In view of recent advances in single cell genomics, we describe WAT macrophages from a ‘fusion perspective’ and speculate on the ontogeny of adipoclasts. Specifically, we highlight the role of CD9 and TREM2, two plasma membrane markers of lipid-associated macrophages in WAT, which have been previously described as regulators of fusion and multinucleation in osteoclasts and MGCs. Finally, we consider whether strategies aiming to target WAT macrophages can be more selectively directed against adipoclasts.

Journal article

Ben-Aicha S, Anwar M, Behmoaras J, Punjabi P, Emanueli Cet al., 2021, Human pericardial fluid exosomes regulate macrophage immunophenotype: new prospective for cardiovascular myocardium-epicardium crosstalk in coronary artery disease, Publisher: OXFORD UNIV PRESS, Pages: 3223-3223, ISSN: 0195-668X

Conference paper

Botto M, Buang N, Tapeng L, Gray V, Sardini A, Whilding C, Lightstone L, Cairns T, Pickering M, Behmoaras J, Ling GSet al., 2021, Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus, Nature Communications, Vol: 12, Pages: 1-15, ISSN: 2041-1723

The majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.

Journal article

Behmoaras J, Gil J, 2021, Similarities and interplay between senescent cells and macrophages, The Journal of Cell Biology, Vol: 220, ISSN: 0021-9525

Senescence is a cellular program that prevents the replication of old, damaged, or cancerous cells. Senescent cells become growth arrested and undergo changes in their morphology, chromatin organization, and metabolism, and produce a bioactive secretome. This secretome, the senescence-associated secretory phenotype (SASP), mediates many of the pathophysiological effects associated with senescent cells, for example, recruiting and activating immune cells such as macrophages. The relation between senescent cells and macrophages is intriguing: senescent cells recruit macrophages, can induce them to undergo senescence, or can influence their polarization. Senescent cells and macrophages share multiple phenotypic characteristics; both have a high secretory status, increased lysosome numbers, or the ability to activate the inflammasome. Senescent cells accumulate during aging and disease, and killing them results in widespread benefits. Here we discuss similarities between senescent cells and macrophages and interpret the latest developments in macrophage biology to understand the molecular mechanisms of cellular senescence. We describe evidence and effects of senescence in macrophages and speculate on the ontogeny of the senescent-like state in macrophages. Finally, we examine the macrophage–senescent cell interplay and its impact on macrophage effector functions during inflammatory conditions and in the tumor microenvironment.

Journal article

Behmoaras J, 2021, The versatile biochemistry of iron in macrophage effector functions, The Federation of European Biochemical Societies (FEBS) Journal, Vol: 288, Pages: 6972-6989, ISSN: 1742-464X

Macrophages are mononuclear phagocytes with remarkable polarization ability that allow them to have tissue‐specific functions during development, homeostasis, inflammatory and infectious disease. One particular trophic factor in the tissue environment is iron, which is intimately linked to macrophage effector functions. Macrophages have a well‐described role in the control of systemic iron levels, but their activation state is also depending on iron‐containing proteins/enzymes. Haemoproteins, dioxygenases and iron–sulphur (Fe‐S) enzymes are iron‐binding proteins that have bactericidal, metabolic and epigenetic‐related functions, essential to shape the context‐dependent macrophage polarization. In this review, I describe mainly pro‐inflammatory macrophage polarization focussing on the role of iron biochemistry in selected haemoproteins and Fe‐S enzymes. I show how iron, as part of haem or Fe‐S clusters, participates in the cellular control of pro‐inflammatory redox reactions in parallel with its role as enzymatic cofactor. I highlight a possible coordinated regulation of haemoproteins and Fe‐S enzymes during classical macrophage activation. Finally, I describe tryptophan and α‐ketoglutarate metabolism as two essential effector pathways in macrophages that use diverse iron biochemistry at different enzymatic steps. Through these pathways, I show how iron participates in the regulation of essential metabolites that shape macrophage function.

Journal article

Behmoaras J, Ko J-H, Olona A, Papathanassiu AE, Buang N, Park K-S, Costa ASH, Mauro Cet al., 2020, BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages, Journal of Cell Science, Vol: 133, ISSN: 0021-9533

In response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.

Journal article

Gisby J, Clarke C, Medjeral-Thomas N, Malik T, Papadaki A, Mortimer P, Buang N, Lewis S, Pereira M, Toulza F, Fagnano E, Mawhin M-A, Dutton E, Tapeng L, Kirk P, Behmoaras J, Sandhu E, McAdoo S, Prendecki M, Pickering M, Botto M, Willicombe M, Thomas D, Peters Jet al., 2020, Longitudinal proteomic profiling of high-risk patients with COVID-19 reveals markers of severity and predictors of fatal disease, eLife, Vol: 10, Pages: 1-30, ISSN: 2050-084X

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We performed dense serial blood sampling in hospitalised and non-hospitalised ESKD patients with COVID-19 (n=256 samples from 55 patients) and used Olink immunoassays to measure 436 circulating proteins. Comparison to 51 non-infected ESKD patients revealed 221 proteins differentially expressed in COVID-19, of which 69.7% replicated in an independent cohort of 46 COVID-19 patients. 203 proteins were associated with clinical severity scores, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g proteinase-3) and epithelial injury (e.g. KRT19). Random Forests machine learning identified predictors of current or future severity such as KRT19, PARP1, PADI2, CCL7, and IL1RL1 (ST2). Survival analysis with joint models revealed 69 predictors of death including IL22RA1, CCL28, and the neutrophil-derived chemotaxin AZU1 (Azurocidin). Finally, longitudinal modelling with linear mixed models uncovered 32 proteins that display different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. Our findings point to aberrant innate immune activation and leucocyte-endothelial interactions as central to the pathology of severe COVID-19. The data from this unique cohort of high-risk individuals provide a valuable resource for identifying drug targets in COVID-19.

Journal article

Papathanassiu AE, Lodi F, Elkafrawy H, Certo M, Vu H, Ko JH, Behmoaras J, Mauro C, Lambrechts Det al., 2020, BCAT1 as a druggable target in immuno-oncology, AACR Annual Meeting, Publisher: AMER ASSOC CANCER RESEARCH, ISSN: 0008-5472

Conference paper

Pereira M, Ko J-H, Logan J, Protheroe H, Kim K-B, Tan ALM, Croucher PI, Park K-S, Rotival M, Petretto E, Bassett JD, Williams GR, Behmoaras Jet al., 2020, A trans-eQTL network regulates osteoclast multinucleation and bone mass, eLife, Vol: 9, ISSN: 2050-084X

Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb-/-, Atp8b2+/-, Igsf8-/-, Eml1-/-, Appl2-/-, Deptor-/-) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass.

Journal article

Guerrero A, Herranz N, Sun B, Wagner V, Gallage S, Guiho R, Wolter K, Pombo J, Irvine EE, Innes AJ, Birch J, Glegola J, Manshaei S, Heide D, Dharmalingam G, Harbig J, Olona A, Behmoaras J, Dauch D, Uren AG, Zender L, Vernia S, Martínez-Barbera JP, Heikenwalder M, Withers DJ, Gil Jet al., 2019, Cardiac glycosides are broad-spectrum senolytics, Nature Metabolism, Vol: 1, Pages: 1074-1088, ISSN: 2522-5812

Senescence is a cellular stress response that results in the stable arrest of old, damaged or pre-neoplastic cells. Oncogene-induced senescence is tumour suppressive but can also exacerbate tumorigenesis through the secretion of proinflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed ‘senolytics’, have proved beneficial in animal models of many age-associated diseases. In the present study, we show that the cardiac glycoside ouabain is a senolytic agent with broad activity. Senescent cells are sensitized to ouabain-induced apoptosis, a process mediated in part by induction of the proapoptotic Bcl-2 family protein NOXA. We demonstrate that cardiac glycosides synergize with anti-cancer drugs to kill tumour cells and eliminate senescent cells that accumulate after irradiation or in old mice. Ouabain also eliminates senescent pre-neoplastic cells. The findings of the present study suggest that cardiac glycosides may be effective anti-cancer drugs by acting through multiple mechanisms. Given the broad range of senescent cells targeted by cardiac glycosides, their use against age-related diseases warrants further exploration.

Journal article

Pereira M, Chen T-D, Buang N, Olona A, Ko J-H, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, Cook HT, McAdoo SP, Frezza C, Behmoaras Jet al., 2019, Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo, Cell Reports, Vol: 28, Pages: 498-511.e5, ISSN: 2211-1247

Iron is an essential metal for fine-tuning the innate immune response through macrophage function. An integrative view of transcriptional and metabolic responses generated from iron perturbation in macrophages is lacking. Here we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses by integrating RNA-sequencing and stable isotope tracing. We show that acute iron deprivation causes an anti-proliferative Warburg transcriptome characterized by an ATF4-dependent signature. Metabolically, iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucosederived citrate pools associated with lipid droplet accumulation and modest levels of itaconate production. LPS polarization increases itaconate/succinate ratio and decreases pro-inflammatory cytokine production in iron-deprived macrophages. Acute iron deprivation reduces the severity of macrophage-dependent crescentic glomerulonephritis by limiting glomerular cell proliferation and inducing lipid accumulation in the renal cortex, phenocopying partly the iron-driven metabolic and transcriptional responses. These results suggest that acute iron deprivation has in vivo protective effects, by causing an antiinflammatory immuno-metabolic switch in macrophages.

Journal article

Prendecki M, Mcadoo S, Turner-Stokes T, Bhangal G, Woollard K, Behmoaras J, Aitman T, Cook T, Unwin R, Pusey C, Tam Fet al., 2019, THE EFFECT OF P2X7 ANTAGONISM ON NEPHROTOXIC NEPHRITIS, 19th International Vasculitis and ANCA Workshop, Publisher: OXFORD UNIV PRESS, Pages: 93-94, ISSN: 1462-0324

Conference paper

Prendecki M, Mcadoo S, Turner-Stokes T, Garcia-Diaz A, Woollard K, Behmoaras J, Cook T, Unwin R, Aitman T, Pusey C, Tam Fet al., 2019, A NOVEL P2X7 KNOCKOUT RAT IS NOT PROTECTED FROM EXPERIMENTAL GLOMERULONEPHRITIS OR VASCULITIS, 19th International Vasculitis and ANCA Workshop, Publisher: OXFORD UNIV PRESS, ISSN: 1462-0324

Conference paper

Behmoaras J, Petretto E, 2019, Cell function in disease: there are more than two parties at play, Annals of the Rheumatic Diseases, Vol: 78, ISSN: 0003-4967

Journal article

Bagnati M, Moreno-Moral A, Ko J-H, Nicod J, Harmston N, Imprialou M, Game L, Gil J, Petretto E, Behmoaras Jet al., 2019, Systems-genetics identifies a macrophage cholesterol network associated with physiological wound healing, JCI insight, Vol: 4, ISSN: 2379-3708

Among other cells, macrophages regulate the inflammatory and reparative phases during wound healing but genetic determinants and detailed molecular pathways that modulate these processes are not fully elucidated. Here, we took advantage of normal variation in wound healing in 1,378 genetically outbred mice, and carried out macrophage RNA-sequencing profiling of mice with extreme wound healing phenotypes (i.e., slow and fast healers, n = 146 in total). The resulting macrophage coexpression networks were genetically mapped and led to the identification of a unique module under strong trans-acting genetic control by the Runx2 locus. This macrophage-mediated healing network was specifically enriched for cholesterol and fatty acid biosynthetic processes. Pharmacological blockage of fatty acid synthesis with cerulenin resulted in delayed wound healing in vivo, and increased macrophage infiltration in the wounded skin, suggesting the persistence of an unresolved inflammation. We show how naturally occurring sequence variation controls transcriptional networks in macrophages, which in turn regulate specific metabolic pathways that could be targeted in wound healing.

Journal article

Srivastava P, van Eyll J, Godard P, Manuela M, Delahaye-Duriez A, Van Steenwinckel J, Gressens P, Danis B, Vandenplas C, Patrik F, Leclercq K, Mairet-Coello G, Cardenas A, Vanclef F, Laaniste L, Niespodziany I, Keaney J, Gasser J, Gillet G, Shkura K, Chong S-A, Behmoaras J, Kadiu I, Petretto EG, Kaminski R, Johnson Met al., 2018, A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target, Nature Communications, Vol: 9, ISSN: 2041-1723

The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.

Journal article

Pereira M, Petretto E, Gordon S, Bassett JHD, Williams GR, Behmoaras JVet al., 2018, Common signalling pathways in macrophage and osteoclast multinucleation, Journal of Cell Science, Vol: 131, ISSN: 0021-9533

Macrophage cell fusion and multinucleation are fundamental processes in the formation of multinucleated giant cells (MGCs) in chronic inflammatory disease and osteoclasts in the regulation of bone mass. However, this basic cell phenomenon is poorly understood despite its pathophysiological relevance. Granulomas containing multinucleated giant cells are seen in a wide variety of complex inflammatory disorders, as well as in infectious diseases. Dysregulation of osteoclastic bone resorption underlies the pathogenesis of osteoporosis and malignant osteolytic bone disease. Recent reports have shown that the formation of multinucleated giant cells and osteoclast fusion display a common molecular signature, suggesting shared genetic determinants. In this Review, we describe the background of cell–cell fusion and the similar origin of macrophages and osteoclasts. We specifically focus on the common pathways involved in osteoclast and MGC fusion. We also highlight potential approaches that could help to unravel the core mechanisms underlying bone and granulomatous disorders in humans.

Journal article

Olona A, Terra X, Ko JH, Grau-Bove C, Pinent M, Ardevol A, Garcia Diaz A, Moreno-Moral A, Edin M, Bishop-Bailey D, Zeldin DC, Aitman TJ, Petretto E, Blay M, Behmoaras JVet al., 2018, Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis, Molecular Metabolism, Vol: 11, Pages: 18-32, ISSN: 2212-8778

Objective: When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA) and its downstream enzymatic cascades such as cyclooxygenase in adipogenesis is well established while the exact contribution of P450 epoxygenase pathway remain to be established. Enzymes belonging to this pathway are mainly encoded by theCYP2J locus but the latter shows extensive allelic expansion in mice, an obstacle for adipogenesis-related studies. The human CYP2J locus contains a single gene (CYP2J2) whereas mice and rats have 8 and 3 paralogues, respectively.Methods and results: We took advantage of the simpler genetic architecture of the Cyp2jlocus in the rat and generated a Cyp2j4 (orthologue of human CYP2J2) knockout rat. We used Cyp2j4-/- rats in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF). The phenotyping of Cyp2j4-/- rats under CAF was integrated with proteomics (LC-MS/MS) and lipidomics (LC-MS) analyses in the liver and the adipose tissue. We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterised by (i) down-regulation of white adipose tissue (WAT) PPARγ and C/EBPα, (ii) adipocyte hypertrophy (iii) extracellular matrix remodelling and (iv) alternative usage of AA pathway. Specifically, in Cyp2j4-/- rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain, hepatic lipid accumulation and dysregulated gluconeogenesis. Conclusion: These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic role in fine-tuning AA pathway in obesity-mediated hepatic steatosis.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00461351&limit=30&person=true