Imperial College London

Dr Jarvist Moore Frost

Faculty of Natural SciencesDepartment of Physics

Royal Society University Research Fellow



+44 (0)20 7594 1167jarvist.frost Website




1004Huxley BuildingSouth Kensington Campus





Visualisation of the bond length contraction / expansion in a methano-tris adduct of C60 fullerene

I’m an electronic structure theorist. I specialise in writing bespoke computer code to build models which represent messy, disordered materials. These materials are more difficult to simulate than perfect crystals because the symmetry that normally gives physics such predictive power are broken.

I find the mixture of statistical physics (all those atoms jiggling and wiggling!) and quantum mechanics (all those electrons zooming around) really exciting to imagine and simulate. This work will help us design the materials of the future.

During 2019 I worked at, a small-molecule drugs-discovery startup company that was (unusually) combining machine-learning and electronic structure methods to design new drugs cheaper and more effectively. I now continue a vein of drugs-development research in the academic environment, but specialising in areas not well serviced by for-profit companies (particularly, anti-bacterial resistance), and in the underlying solid-state physics of drugs and biological simulations (particularly, trying to find approximate physical models!). 

My other research aims for 2020 and beyond are to: get a really good grip on understanding charge-carrier mobility in polar semiconductors; find ways to include thermal disorder in electronic structure calculations; automate the fitting of semi-empirical tight-binding quantum models to higher level calculations as surrogate models for large scale calculation. 

My publications are collated at: Google Scholar - Jarvist Moore Frost

My Academic blog is available at:



Zheng X, Hopper TR, Gorodetsky A, et al., 2021, Multi-pulse terahertz spectroscopy unveils hot polaron photoconductivity dynamics in metal-halide perovskites, Journal of Physical Chemistry Letters, ISSN:1948-7185

Whalley LD, van Gerwen P, Frost JM, et al., 2021, Giant Huang-Rhys Factor for Electron Capture by the Iodine Intersitial in Perovskite Solar Cells, Journal of the American Chemical Society, Vol:143, ISSN:0002-7863, Pages:9123-9128

Muscarella LA, Hutter EM, Frost JM, et al., 2021, Accelerated Hot-Carrier Cooling in MAPbI(3) Perovskite by Pressure-Induced Lattice Compression, Journal of Physical Chemistry Letters, Vol:12, ISSN:1948-7185, Pages:4118-4124

Davies DW, Savory CN, Frost JM, et al., 2020, Descriptors for electron and hole charge carriers in metal oxides, Journal of Physical Chemistry Letters, Vol:11, ISSN:1948-7185, Pages:438-444

Yang RX, Skelton JM, da Silva EL, et al., 2020, Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites, Journal of Chemical Physics, Vol:152, ISSN:0021-9606, Pages:024703-1-024703-9

More Publications