Imperial College London

Prof Jenny Collier

Faculty of EngineeringDepartment of Earth Science & Engineering

Professor of Marine Geophysics
 
 
 
//

Contact

 

+44 (0)20 7594 6443jenny.collier CV

 
 
//

Location

 

4.46Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

64 results found

Chichester B, Rychert C, Harmon N, Allen R, Collier J, Henstock T, Rietbrock Aet al., 2020, Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times, GEOPHYSICAL JOURNAL INTERNATIONAL, Vol: 223, Pages: 1758-1768, ISSN: 0956-540X

Journal article

Cooper GF, Macpherson CG, Blundy JD, Maunder B, Allen RW, Goes S, Collier JS, Bie L, Harmon N, Hicks SP, Iveson AA, Prytulak J, Rietbrock A, Rychert CA, Davidson JPet al., 2020, Variable water input controls evolution of the Lesser Antilles volcanic arc, Nature, Vol: 582, Pages: 525-529, ISSN: 0028-0836

Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards.

Journal article

Davy R, Collier JS, Henstock TJ, the VoiLA consortiumet al., 2020, Wide‐angle seismic imaging of two modes of crustal accretion in mature Atlantic Ocean crust, Journal of Geophysical Research: Solid Earth, Vol: 125, Pages: 1-21, ISSN: 2169-9313

We present a high‐resolution 2‐D P‐wave velocity model from a 225 km long active seismic profile, collected over ~60‐75 Ma central Atlantic crust. The profile crosses five ridge segments separated by a transform and three non‐transform offsets. All ridge discontinuities share similar primary characteristics, independent of the offset. We identify two types of crustal segment. The first displays a classic two‐layer velocity structure with a high gradient layer 2 (~0.9 s‐1) above a lower gradient layer 3 (0.2 s‐1). Here PmP coincides with the 7.5 km s‐1 contour and velocity increases to >7.8 km s‐1 within 1 km below. We interpret these segments as magmatically‐robust, with PmP representing a petrological boundary between crust and mantle. The second has a reduced contrast in velocity gradient between upper and lower crust, and PmP shallower than the 7.5 km s‐1 contour. We interpret these segments as tectonically dominated, with PmP representing a serpentinized (alteration) front. Whilst velocity depth profiles fit within previous envelopes for slow‐spreading crust, our results suggest that such generalizations give a misleading impression of uniformity. We estimate that the two crustal styles are present in equal proportions on the floor of the Atlantic. Within two tectonically dominated segments we make the first wide‐angle seismic identifications of buried oceanic core complexes in mature (> 20 Ma) Atlantic Ocean crust. They have a ~20 km wide “domal” morphology with shallow basement and increased upper‐crustal velocities. We interpret their mid‐crustal seismic velocity inversions as alteration and rock‐type assemblage contrasts across crustal‐scale detachment faults.

Journal article

Bie L, Rietbrock A, Hicks S, Allen R, Blundy J, Clouard V, Collier J, Davidson J, Garth T, Goes S, Harmon N, Henstock T, van Hunen J, Kendall M, Kruger F, Lynch L, Macpherson C, Robertson R, Rychert K, Tait S, Wilkinson J, Wilson Met al., 2020, Along‐arc heterogeneity in local seismicity across the lesser antilles subduction zone from a dense ocean‐bottom seismometer network, Seismological Research Letters, Vol: 91, Pages: 237-247, ISSN: 0895-0695

The Lesser Antilles arc is only one of two subduction zones where slow‐spreading Atlantic lithosphere is consumed. Slow‐spreading may result in the Atlantic lithosphere being more pervasively and heterogeneously hydrated than fast‐spreading Pacific lithosphere, thus affecting the flux of fluids into the deep mantle. Understanding the distribution of seismicity can help unravel the effect of fluids on geodynamic and seismogenic processes. However, a detailed view of local seismicity across the whole Lesser Antilles subduction zone is lacking. Using a temporary ocean‐bottom seismic network we invert for hypocenters and 1D velocity model. A systematic search yields a 27 km thick crust, reflecting average arc and back‐arc structures. We find abundant intraslab seismicity beneath Martinique and Dominica, which may relate to the subducted Marathon and/or Mercurius Fracture Zones. Pervasive seismicity in the cold mantle wedge corner and thrust seismicity deep on the subducting plate interface suggest an unusually wide megathrust seismogenic zone reaching ∼65km∼65  km depth. Our results provide an excellent framework for future understanding of regional seismic hazard in eastern Caribbean and the volatile cycling beneath the Lesser Antilles arc.

Journal article

Harmon N, Rychert C, Collier J, Henstock T, van Hunen J, Wilkinson JJet al., 2019, Mapping geologic features onto subducted slabs, Geophysical Journal International, Vol: 219, Pages: 725-733, ISSN: 0956-540X

Estimating the location of geologic and tectonic features on a subducting plate is important for interpreting their spatial relationships with other observables including seismicity, seismic velocity and attenuation anomalies, and the location of ore deposits and arc volcanism in the over-riding plate. Here we present two methods for estimating the location of predictable features such as seamounts, ridges and fracture zones on the slab. One uses kinematic reconstructions of plate motions, and the other uses multidimensional scaling to flatten the slab onto the surface of the Earth. We demonstrate the methods using synthetic examples and also using the test case of fracture zones entering the Lesser Antilles subduction zone. The two methods produce results that are in good agreement with each other in both the synthetic and real examples. In the Lesser Antilles, the subducted fracture zones trend northwards of the surface projections. The two methods begin to diverge in regions where the multidimensional scaling method has its greatest likely error. Wider application of these methods may help to establish spatial correlations globally.

Journal article

Allen R, Collier J, Stewart A, Henstock T, Goes S, Rietbrock Aet al., 2019, The role of arc migration in the development of the Lesser Antilles: a new tectonic model for the Cenozoic evolution of the eastern Caribbean, Geology, Vol: 47, Pages: 891-895, ISSN: 0091-7613

Continental arc systems often show evidence of large-scale migration both towards and away from the incoming plate. In oceanic arc systems however, whilst slab roll-back and the associated processes of back-arc spreading and arc migration towards the incoming plate are commonplace, arc migration away from the incoming plate is rarely observed. We present a new compilation of marine magnetic anomaly and seismic data in order to propose a new tectonic model for the eastern Caribbean region that includes arc migration in both directions. We synthesise new evidence to show two phases of back-arc spreading and eastward arc migration towards the incoming Atlantic. A third and final phase of arc migration to the west subdivided the earlier back-arc basin on either side of the present-day Lesser Antilles Arc. This is the first example of regional multi-directional arc migration in an intra-oceanic setting and has implications for along-arc structural and geochemical variations. The back and forth arc migrations are probably due to the constraints the neighbouring American plates impose on this isolated subduction system rather than variations in subducting slab buoyancy.

Journal article

McDermott C, Collier JS, Lonergan L, Fruehn J, Bellingham Pet al., 2019, Seismic velocity structure of seaward-dipping reflectors on the South American continental margin, Earth and Planetary Science Letters, Vol: 521, Pages: 14-24, ISSN: 0012-821X

Seaward dipping reflectors (SDRs) are a key feature within the continent to ocean transition zone of volcanic passive margins. Here we conduct an automated pre-stack depth-migration imaging analysis of commercial seismic data from the volcanic margins of South America. The method used an isotropic, ray-based approach of iterative velocity model building based on the travel time inversion of residual pre-stack depth migration move-out. We find two distinct seismic velocity patterns within the SDRs. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, those SDRs that lie within faulted half grabens also have high velocity zones at their down-dip ends. The velocity anomalies are generally concordant with the reflectivity and so we attribute them to the presence of dolerite sills that were injected into the lava pile. The sills therefore result from late-stage melt delivery along the large landward-dipping faults that bound them. In contrast the more outboard SDRs show no velocity anomalies, are more uniform spatially and have unfaulted basal contacts. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early extension and faulting of the upper brittle crust transitioning into more organised, dike-fed eruptions similar to seafloor spreading.

Journal article

Lonergan L, Collier J, McDermott C, Fruehen J, Bellingham Pet al., 2019, Seismic velocity structure of two types of seaward-dipping reflectors on the South American continental margin

Seaward dipping reflectors (SDRs) are a key feature within the continent-to-ocean transition zone of volcanic passive margins. They are formed by volcanic activity during continental breakup. Along the volcanic margins of South America, we have mapped and documented two distinct types of SDR: Type I that are relatively straight and lie within faulted half-grabens that are partially overlain by Type II that are more curved and have unfaulted basal contacts. Here we conduct an automated, pre-stack, depth-migration imaging analysis on commercial seismic data to determine more about their physical properties. We find that the two SDR classes have distinct seismic velocity characteristics. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, the Type I SDRs also have high velocity zones at their down-dip ends. We attribute these elevated velocities to the presence of less porous and/or more mafic rocks. We interpret them as the remnants of volcanic feeder systems along the large landward-dipping faults that bound these SDRs. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early tectonic stretching of the upper brittle crust transitioning into dike-fed eruptions similar to seafloor spreading.

Conference paper

García-Moreno D, Gupta S, Collier JS, Oggioni F, Vanneste K, Trentesaux A, Verbeeck K, Versteeg W, Jomard H, Camelbeeck T, De Batist Met al., 2019, Middle–Late Pleistocene landscape evolution of the Dover Strait inferred from buried and submerged erosional landforms, Quaternary Science Reviews, Vol: 203, Pages: 209-232, ISSN: 0277-3791

Prominent landforms, either buried or preserved at the seafloor, provide important constraints on the processes that led to the opening and present-day configuration of the Dover Strait. Here, we extend previous investigations on two distinct landform features, the Fosse Dangeard and Lobourg Channel, to better understand the poly-phase history of their formation and inferences for the opening and Pleistocene evolution of the Dover Strait. The Fosse Dangeard consist of several interconnected palaeo-depressions. Their morphology and spatial distribution are interpreted to be the result of plunge-pool erosion generated at the base of north-eastward retreating waterfalls. Their infills comprise internal erosional surfaces that provide evidence for the occurrence of several erosional episodes following their initial incision. The Lobourg Channel comprises various sets of erosional features, attesting to the occurrence of several phases of intense fluvial and/or flood erosion. The last one of these carved a prominent inner channel, which truncates the uppermost infill of the Fosse Dangeard. The morphology of the Lobourg inner channel and the erosional features associated with its incision strongly resemble landforms found in megaflood-eroded terrains, indicating that this valley was likely eroded by one or several megafloods. Our study therefore corroborates the existence of waterfalls in the Dover Strait at least once during the Pleistocene Epoch. It also provides evidence of the occurrence of multiple episodes of fluvial and flood erosion, including megafloods. Finally, this study allows us to establish a relative chronology of the erosional/depositional episodes that resulted in the present-day morphology of this region.

Journal article

Armitage JJ, Collier JS, 2018, The thermal structure of volcanic passive margins, Petroleum Geoscience, Vol: 24, Pages: 393-401, ISSN: 1354-0793

Over the past ten years we have numerically modelled the properties of the magmatism generated at four of the key areas where the ‘mantle plume–volcanic margin hypothesis’ is expected to be valid: the North Atlantic, South Atlantic, India–Seychelles and Afar. Our model incorporates many of the original assumptions in the classic White and McKenzie model, with pure shear of the lithospheric mantle, passive upwelling and decompressional melting. Our model is however two- rather than one-dimensional, can capture the rift history (extension rate changes and axis jumps) and tracks mantle depletion during melting. In all four of our study areas we require the sub-lithospheric mantle to be 100 – 200°C hotter than ‘normal’, non-volcanic margins to explain the characteristics of the magmatism. In the three passive margin cases we find this excess temperature is limited to a 50 – 100 km thick layer. We require this layer temperature to drop along-strike away from the proposed sites of plume impact at the base of the lithosphere. However, we also find that lithospheric thickness and rift history are as important as temperature for controlling the magmatism. Our work therefore lends support to the hypothesis that the excess magmatism at volcanic margins is due to a thermal anomaly in the asthenosphere, albeit with consideration of extra parameters.

Journal article

McDermott C, Lonergan L, Collier JS, McDermott KG, Bellingham Pet al., 2018, Characterization of seaward-dipping reflectors along the South American Atlantic Margin and implications for continental breakup, Tectonics, Vol: 37, Pages: 3303-3327, ISSN: 0278-7407

Thick packages of lavas forming seaward‐dipping reflectors (SDRs) are diagnostic features of volcanic passive margins. Despite their significance to continental breakup studies, their formation mechanism is still debated. We use ~22,000 km of high‐quality, depth‐migrated, seismic data to document the three‐dimensional geometry of SDRs offshore South America. We find two types: Type I are planar and occur as fault‐bounded wedges. Type II are characterized by reflections that become more convex‐upward in the downdip direction and terminate against a subhorizontal base. We interpret the transition from Type I to Type II SDRs to represent a continuum from continental rifting to full plate separation with formation of new, subaerially generated, magmatic crust. Type I SDRs formed in half grabens during the stretching of continental crust, while Type II lavas infill the space produced by flexing of the crust due to the solidification of the underlying feeder dikes as the magmatic crust moved away from the spreading center. Type II SDRs vary in length and thickness along the margin. In the north, close to the Paraná flood basalts, they are long (tens of kilometers), reach thicknesses of up to 15 km, and have an across margin width of up to 600 km. To the south the Type II SDRs are thinner with lava lengths of <10 km. We propose that Type II lavas in the north erupted from a subaerial, plate spreading center above the Tristan mantle plume and that the shorter lava flows to the south indicates eruption into water, consistent with a cooler, off‐plume mantle.

Journal article

Bosence DWJ, Collier JS, Fleckner S, Gallois A, Watkinson IMet al., 2018, Discriminating between the origins of remotely sensed circular structures: carbonate mounds, diapirs or periclinal folds? Purbeck Limestone Group, Weymouth Bay, UK, Journal of the Geological Society, Vol: 175, Pages: 742-756, ISSN: 0016-7649

Many sedimentary rock successions contain plan-view circular structures, such as impacts, diapirs and carbonate build-ups. When remotely sensed, it can be difficult to discriminate between their formation mechanisms. Here we examine this problem by assessing the origins of circular structures imaged in high-resolution multibeam bathymetric data from Weymouth Bay, UK. The imagery shows 30–150 m across, concave-down structures within the upper Purbeck Limestone Group on the southern limb of the Purbeck Anticline. Similar structures have not been identified in the extensive outcrops around the bay. The morphology and geological setting of the structures are consistent with three different interpretations: carbonate mounds, periclinal folds and evaporite diapirs. However, none of these structures has been previously recorded in the upper Purbeck Limestone Group outcrops of this internationally renowned geological region. We apply a scoring system to 25 features of the circular structures to discriminate between these three alternative interpretations. This analysis indicates that evaporite diapirs are the least likely and carbonate mounds the most likely origin of the structures. The presence of carbonate mounds revises the upper Purbeck palaeofacies distribution in its type area and provides an analogue for the exploration for hydrocarbon reservoirs in lacustrine mounds.

Journal article

Westhead RK, McCarthy DJ, Collier JS, Sanderson DJet al., 2018, Spatial variability of the Purbeck-Wight Fault Zone-a long-lived tectonic element in the southern UK, Proceedings of the Geologists' Association, Vol: 129, Pages: 436-451, ISSN: 0016-7878

New seamless onshore to offshore bedrock (1:10. k scale) mapping for the Lyme Bay area is used to resolve the westward termination of the Purbeck-Wight Fault Zone (PWFZ) structure, comprising one of the most prominent, long-lived (Variscan-Cimmerian-Alpine) structural lineaments in the southern UK. The study area lies south of the Variscan Frontal Thrust and overlays the basement Variscide Rhenohercynian Zone, in a region of dominant E-W tectonic fabric and a secondary conjugate NW-SE/NE-SW fabric. The PWFZ comprises one of the E-W major structures, with a typical history including Permian to early Cretaceous growth movement (relating to basement Variscan Thrust reactivation) followed by significant Alpine (Helvetic) inversion. Previous interpretations of the PWFZ have been limited by the low resolution (1:250. k scale) of the available offshore BGS mapping, and our study fills this gap. We describe a significant change in structural style of the fault zone from east to west. In the Weymouth Bay area, previous studies demonstrate the development of focussed strain associated with the PWFZ, accompanied by distributed strain, N-S fault development, and potential basement uplift in its hangingwall. In the Lyme Bay area to the west, faulting is dominantly E-W, with N-S faulting absent. Comparison of the newly mapped faulting networks to gravity data suggests a spatial relationship between this faulting variation and basement variability and uplift.

Journal article

Allen RW, Berry C, Henstock T, Collier JS, Dondin FJ-Y, Rietbrock A, Latchman JL, Robertson REAet al., 2018, 30 years in the life of an active submarine volcano: A time-lapse bathymetry study of the Kick-‘em-Jenny Volcano, Lesser Antilles, G3: Geochemistry, Geophysics, Geosystems, Vol: 19, Pages: 715-731, ISSN: 1525-2027

Effective monitoring is an essential part of identifying and mitigating volcanic hazards. In the submarine environment this is more difficult than onshore because observations are typically limited to land-based seismic networks and infrequent shipboard surveys. Since the first recorded eruption in 1939, the Kick-‘em-Jenny (KeJ) volcano, located 8km off northern Grenada, has been the source of 13 episodes of T-phase signals. These distinctive seismic signals, often coincident with heightened body-wave seismicity, are interpreted as extrusive eruptions. They have occurred with a recurrence interval of around a decade, yet direct confirmation of volcanism has been rare. By conducting new bathymetric surveys in 2016 and 2017 and reprocessing 4 legacy datasets spanning 30 years we present a clearer picture of the development of KeJ through time. Processed grids with a cell size of 5m and vertical precision on the order of 1-4m allow us to correlate T-phase episodes with morphological changes at the volcano's edifice. In the time-period of observation 7.09x106 m3 of material has been added through constructive volcanism – yet 5 times this amount has been lost through landslides. Limited recent magma production suggests that KeJ may be susceptible to larger eruptions with longer repeat times than have occurred during the study interval, behavior more similar to sub-aerial volcanism in the arc than previously thought. T-phase signals at KeJ have a varied origin and are unlikely to be solely the result of extrusive submarine eruptions. Our results confirm the value of repeat swath bathymetry surveys in assessing submarine volcanic hazards.

Journal article

Collier JS, McDermott C, Warner G, Gyori N, Schnabel M, McDermott K, Horn BWet al., 2017, New constraints on the age and style of continental breakup in the South Atlantic from magnetic anomaly data, Earth and Planetary Science Letters, Vol: 477, Pages: 27-40, ISSN: 0012-821X

We present new constraints on the opening of the South Atlantic Ocean from a joint interpretation of marine magnetic anomaly grids and forward modelling of conjugate profiles. We use 45,000 km of recently collected commercial ship track data combined with 561,000 km of publically available data. The new data cover the critical ocean–continental transition zones and allow us to identify and downgrade some poorly navigated older ship tracks relied upon in earlier compilations. Within the final grids the mean cross-over error is 14 nT computed from 8,227 ship track intersections. The forward modelling used uniformly magnetised bodies whose shapes were constrained from coincident deep-seismic reflection data. We find the oldest magnetic anomalies to date from M10r (134.2 Ma, late Valanginian) north of the Falkland-Agulhas Fracture Zone and M3 (129.3 Ma, Barremian) south of the Rio Grande Fracture Zone. Hence, assuming the GPTS used is correct, continental breakup was contemporaneous with the Parana and Etendeka continental flood basalts. Many of the landward linear anomalies overlap seismically mapped Seaward Dipping Reflectors (SDRs). We interpret this to mean that a significant portion of the SDRs overlay crust formed by subaerial seafloor spreading. Here crustal accretion is envisaged to be similar to that at mid-ocean ridges, but sheet lava flows (that later form the SDRs) rather than pillow basalts form the extrusive component. Segmentation of the linear anomalies generated implies that this stage of continental breakup is organised and parallels the seafloor spreading centre that follows. Our results call into question the common assumption that at volcanic continental margins the first linear magnetic anomalies represent the start of conventional (submarine) oceanic crustal generation.

Journal article

Gupta S, Collier JS, Garcia-Moreno D, Oggioni F, Trentesaux A, Vanneste K, De Batist M, Camelbeeck T, Potter G, Van Vliet Lanoe B, Arthur JCRet al., 2017, Two-stage opening of the Dover Strait and the origin of island Britain, Nature Communications, Vol: 8, ISSN: 2041-1723

Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterised by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.

Journal article

Collier J, 2017, A megaflood in the English Channel, ASTRONOMY & GEOPHYSICS, Vol: 58, Pages: 38-42, ISSN: 1366-8781

Journal article

Collier J, 2017, A megaflood in the English Channel, Astronomy and Geophysics, Vol: 58, Pages: 2.38-2.42, ISSN: 1366-8781

Island Britain is deeply embedded in our psyche. Indeed, the white cliffs of Dover are a modern icon of our national identity, with the perception that the English Channel (La Manche) repeatedly protected us from “unwanted continental influences” throughout history. But when did this concept of Britishness evolve? It is well known that, less than 500 000 years ago, when our hominid ancestors battled with the glacial world, southern Britain was physically connected to northern France via a rock ridge at the Dover Strait. This allowed them, and other land animals, to migrate back-and-forth as the climate cooled and warmed. This land bridge disappeared to form the isolated Britain we know today, but how it did so has been the subject of much debate. Did it just slowly erode away in a series of cliff falls as it was weakened by tides and storms, as we see around the coastline today, or did something more dramatic happen? Once posed, this question remained unanswered for more than 50 years, until in 2003 we took to the water with the latest geophysical equipment and discovered an astonishing landscape below the waves. Over the following years we have slowly pieced together evidence for an array of features carved into the floor of the English Channel that we believe show that the rock ridge was removed by a catastrophic event. This event literally changed the course of our history, with the implications resounding right up to the political climate of today.

Journal article

Sanderson DJ, Dix JK, Westhead KR, Collier JSet al., 2017, Bathymetric mapping of the coastal and offshore geology and structure of the Jurassic Coast, Weymouth Bay, UK, Journal of the Geological Society, Vol: 174, Pages: 498-508, ISSN: 0016-7649

Four hundred square kilometres of 1 m binned, full coverage swath bathymetry data, integrated with similar resolution onshore topography, have been used to generate a seamless onshore to offshore bedrock map covering an extensive area adjacent to the ‘Jurassic Coast’ World Heritage site. Analysis of these data provides new insights into the structural development of the Purbeck Monocline Cenozoic inversion structure; in particular, variations in the expression of strain between the hanging-wall block and the fault inversion zone. The footwall to the basin-bounding faults compartmentalized deformation and uplift, and acted as a buttress to compression. The data also show a limited thickness changes within the major lithostratigraphical divisions, and a notable absence of basin-related extensional faulting in the offshore area that is in marked contrast to the more extensively studied onshore region. This indicates that prior to inversion, the basin evolved by intermittent activity on a few major extensional faults. This improved understanding of the development of the basin and inversion structures results from our ability to integrate and quantitatively manipulate these high-resolution and spatially extensive offshore and onshore datasets.

Journal article

Taposeea CA, Armitage JJ, Collier JS, 2016, Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic, Tectonophysics, Vol: 716, Pages: 4-20, ISSN: 0040-1951

The southern South Atlantic has often been considered a classic example of continental break-up in the presence of a starting mantle plume. Evidence for a mantle plume includes the Paranà-Etendeka continental flood basalts, which are associated with the Rio Grande Rise and Walvis Ridge, and the wide-spread presence of seaward dipping reflectors and high-velocity lower-crustal bodies along the conjugate margins. Observations from seaward dipping reflector distributions suggested that lithospheric segmentation played a major role in the pattern of volcanism during break-up in this region, and consequent numerical modelling was used to test this. We tested this hypothesis ourselves by measuring the thickness of the earliest oceanic crust generated. This was done through the use of 37 measurements of initial oceanic crustal thickness from wide-angle and multichannel seismic profiles collected along the conjugate margins. These measurements show that at 450. km. south of the Paranà-Etendeka flood basalts the oceanic crust is thicker than the global average at 11.7. km. Farther south the oceanic crust thins, reaching 6.1. km at a distance of 2300. km along-strike. Overall, the along-strike trend of oceanic crustal thickness is linear with a regression coefficient of 0.7 and little indication of segmentation. From numerical models representing extension of the lithosphere, we find that observed melt volumes are matched with the presence of a hot layer. If we assume this region of hot mantle has a thickness of 100. km, its excess temperature relative to the asthenosphere has to decrease from 200 to 50. C, north to south. This decrease in temperature, also seen in published thermobarometry results, suggests that temperature was the primary control of volcanism during the opening of the southern South Atlantic.

Journal article

Schlaphorst D, Kendall JM, Collier JS, Verdon JP, Blundy J, Baptie B, Latchman JL, Massin F, Bouin MPet al., 2016, Water, oceanic fracture zones and the lubrication of subducting plate boundaries - insights from seismicity, Geophysical Journal International, Vol: 204, Pages: 1405-1420, ISSN: 0956-540X

We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power lawdescribes the earthquakemagnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its alongstrike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value 'bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related

Journal article

Collier JS, Oggioni F, Gupta S, Garcia-Moreno D, Trentesaux A, De Batist Met al., 2015, Streamlined islands and the English Channel megaflood hypothesis, Global and Planetary Change, Vol: 135, Pages: 190-206, ISSN: 0921-8181

Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore

Journal article

Collier J, 2015, Q&A: Jenny Collier:, Astronomy & Geophysics, Vol: 56, Pages: 5.39-5.39, ISSN: 1366-8781

Journal article

Garcia-Moreno D, Verbeeck K, Camelbeeck T, De Batist M, Oggioni F, Hurtado OZ, Versteeg W, Jomard H, Collier JS, Gupta S, Trentesaux A, Vanneste Ket al., 2015, Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern Europe), Geophysical Journal International, Vol: 201, Pages: 528-542, ISSN: 1365-246X

On 1580 April 6 one of the most destructive earthquakes of northwestern Europe took placein the Dover Strait (Pas de Calais). The epicentre of this seismic event, the magnitude ofwhich is estimated to have been about 6.0, has been located in the offshore continuationof the North Artois shear zone, a major Variscan tectonic structure that traverses the DoverStrait. The location of this and two other moderate magnitude historical earthquakes in theDover Strait suggests that the North Artois shear zone or some of its fault segments may bepresently active. In order to investigate the possible fault activity in the epicentral area ofthe AD 1580 earthquake, we have gathered a large set of bathymetric and seismic-reflectiondata covering the almost-entire width of the Dover Strait. These data have revealed a broadstructural zone comprising several subparallel WNW–ESE trending faults and folds, some ofthem significantly offsetting the Cretaceous bedrock. The geophysical investigation has alsoshown some indication of possible Quaternary fault activity. However, this activity only appearsto have affected the lowermost layers of the sediment infilling Middle Pleistocene palaeobasins.This indicates that, if these faults have been active since Middle Pleistocene, their slip ratesmust have been very low. Hence, the AD 1580 earthquake appears to be a very infrequentevent in the Dover Strait, representing a good example of the moderate magnitude earthquakesthat sometimes occur in plate interiors on faults with unknown historical seismicity.

Journal article

McGonigle C, Collier JS, 2014, Interlinking backscatter, grain size and benthic community structure, Estuarine, Coastal and Shelf Science, Vol: 147, Pages: 123-136, ISSN: 0272-7714

The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the C

Journal article

Collier J, 2014, Review of ‘Mid-Ocean Ridges’., Geophysical Journal International, Vol: 197, Pages: 1884-1884, ISSN: 0956-540X

Journal article

Hammond JOS, Kendall J-M, Collier JS, Ruempker Get al., 2013, The extent of continental crust beneath the Seychelles, EARTH AND PLANETARY SCIENCE LETTERS, Vol: 381, Pages: 166-176, ISSN: 0012-821X

Journal article

Hammond JOS, Collier JS, Kendall J-M, Helffrich G, Rumpker Get al., 2012, Anomalous lithosphere beneath theSeychelles: Seismic images of a ‘plume scar’, Earth and Planetary Science Letters, Vol: 355-356, Pages: 20-31

Journal article

Armitage JJ, Collier JS, Minshull TA, Henstock TJet al., 2011, Thin oceanic crust and flood basalts: India-Seychelles breakup, GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, Vol: 12

Journal article

Collier JS, Humber SR, 2011, Fringing reefs of the Seychelles inner granitic islands, Western Indian Ocean, Seafloor Geomorphology As Benthic Habitat, Editors: Harris, Baker, Amsterdam, Pages: 339-347

Book chapter

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&person=true&keywords=&itypes=Book%2cBook+chapter%2cConference+paper%2cJournal+article%2cOther%2cPatent%2cPoster%2cReport%2cScholarly+edition%2cSoftware%2cThesis+dissertation%2cWorking+paper&respub-action=search.html&iminyear=1984&minyear=1984&imaxyear=2020&id=00170209&_type=on&page=1&maxyear=2020&type=Book&type=Book+chapter&type=Conference+paper&type=Journal+article&type=Other&type=Patent&type=Poster&type=Report&type=Scholarly+edition&type=Software&type=Thesis+dissertation&type=Working+paper