Imperial College London


Faculty of Natural SciencesDepartment of Physics

Professor of Solid State Physics



+44 (0)20 7594




B909Blackett LaboratorySouth Kensington Campus





Ji-Seon Kim is Professor of Solid State Physics and Director of the Plastic Electronics Centre for Doctoral Training ( at Imperial College London. She also held a Visiting Professorship in Materials Science and Engineering at KAIST, South Korea. She has previously taken up an EPSRC Advanced Research Fellowship at the University of Cambridge, obtained a PhD in Physics in 2000 under the supervision of Prof. Sir Richard Friend, was a Post-Doc in Cambridge. She is conducting scientific research as a technical consultant for Cambridge Display Technology (CDT) Ltd.

Her research focuses on the basic science and technology of Nanoscale Functional Materials such as organics, organic/inorganic hybrids, nano/biomaterials and related applications, as well as developing novel Nanometrology for these functional materials. Her research programme benefits from multidisciplinary scientific background in experimental and theoretical physics and surface/interface science, which provides a unique perspective to approach the research programme in molecular, polymeric, and hybrid electronic materials and devices. She is leading the Nanoanalysis Group (, working together with industrial partners including Samsung, CSEM Brazil, KP-Tech, CDT Ltd. and NPL.

Our recent papers for metrology developed for molecular semiconductors: Raman Spectroscopy as an Advanced Structural Nanoprobe for Conjugated Molecular Semiconductors (Invited topical review);   Organic Photovoltaic Blends Probed by Surface-Enhanced Raman Spectroscopy

Post-doc position available:

We are recruiting a post-doc who will carry out research into “Organic and Hybrid Electronic Materials and Devices for Photovoltaic and Photosensor Applications” under Global Research Laboratory (GRL) programme funded by National Research Foundation of Korea (NRF). This position is for 2 years starting as soon as possible after an interview in September.

PhD projects for 2018 entry are available (all filled). 

Organic Bioelectronics” A recent trend in neuromorphic engineering involves the use of devices based on organic electronic materials. This is largely motivated by the attractive characteristics organic devices offer in interfacing electronics with biology. Key advantages of organic-based materials include their compatibility with low cost processing on large area, mechanically-flexible substrates that can be conformal to the body as well as the tunability of their properties via blending and chemical synthesis. The aim of the proposal is to develop organic-based composites and implement neuromorphic device architectures suitable for the processing of biological (e.g. brain) signals with a view towards applications in the field of implantable electronics, health monitoring, and neural prosthesis. This project will be co-supervised by Prof George Malliaras (Department of Engineering, University of Cambridge).

Organic Near-IR Sensors” Organic sensor devices such as organic photodetectors (OPDs) are important optoelectronic applications using organic semiconductors as a light detecting active medium. For OPD applications, it is critical for organic semiconductors to have efficient light harvesting (with high photocurrent and low dark current) and high spectral selectivity (from UV to NIR/IR) properties. Although the rich variety of organic compounds with their absorption spanning from the UV to NIR offers unique possibilities for these required properties, organic semiconductors with a large photoresponse at NIR spectral ranges with efficient light harvesting and air stability are still very difficult to find.  This project aims to develop key fundamental understanding of organic sensor materials and devices towards high-performance and high-stability NIR photodetectors.

Organic and Hybrid Solar Cells” Continuous increase in the device performance of organic and hybrid (e.g. perovskites) solar cells is strongly related to better understanding of optical and electronic properties of the photoactive layer. There are still many electronic processes in organic/organic and organic/inorganic layers that are critical to device performance (e.g. charge carrier generation/recombination, trapping of electrons and holes, and ionic movement) and are not yet fully understood. This project aims to investigate these important electronic processes in terms of their energetics and photogenerated surface photovoltage and its transient behaviours, and hence to understand and improve solar cell device performance. 

Please contact me ( for more details.




Kim J, Control of Interface Defects for Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes Using Nickel Oxide Hole Injection Layer, Advanced Science, ISSN:2198-3844

Newman MJ, Speller EM, Barbé J, et al., 2018, Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation., Sci Technol Adv Mater, Vol:19, ISSN:1468-6996, Pages:194-202

Kim H, Lee G, Becker S, et al., 2018, Novel patterning of flexible and transparent Ag nanowire electrodes using oxygen plasma treatment, Journal of Materials Chemistry C, Vol:6, ISSN:2050-7526, Pages:9394-9398

Hamilton I, Chander N, Cheetham NJ, et al., 2018, Controlling molecular conformation for highly efficient and stable deep-blue copolymer light-emitting diodes, Acs Applied Materials and Interfaces, Vol:10, ISSN:1944-8244, Pages:11070-11082

Cha H, Wu J, Wadsworth A, et al., 2017, An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor, Advanced Materials, Vol:29, ISSN:0935-9648

More Publications