Imperial College London

ProfessorJi-SeonKim

Faculty of Natural SciencesDepartment of Physics

Professor of Solid State Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7597ji-seon.kim

 
 
//

Location

 

B909Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Ratnasingham:2021:10.1039/d0ma00906g,
author = {Ratnasingham, SR and Mohan, L and Daboczi, M and Degousée, T and Binions, R and Fenwick, O and Kim, J-S and McLachlan, MA and Briscoe, J},
doi = {10.1039/d0ma00906g},
journal = {Materials Advances},
pages = {1606--1612},
title = {Novel scalable aerosol-assisted CVD route for perovskite solar cells},
url = {http://dx.doi.org/10.1039/d0ma00906g},
volume = {2},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Organo-metal halide perovskite research has progressed rapidly, with photovoltaic (PV) devices achieving over 25% power conversion efficiency (PCE). However, scalable production of these devices is an ongoing challenge. We demonstrate the growth of methylammonium lead triiodide (MAPI) films via a novel two-step aerosol-assisted chemical vapour deposition (AACVD) method leading to the first ever perovskite-based PV devices using active layers deposited by AACVD. This is a scalable deposition process, requiring less complex equipment than conventional CVD. Furthermore, our method utilises methanol (MeOH) as the only solvent, as opposed to harmful solvents typically used in perovskite processing. Structural and optical characterization confirms successful formation of MAPI with no secondary phases and an optical bandgap of ∼1.58 eV. The final film had large grains (order of μm), with thickness ranging from 500–1100 nm. These films were used to fabricate working PV devices resulting in a champion PCE of 5.4%. While films demonstrated high structural and compositonal quality, we identified large film roughness as a limiting factor in device PCE, and elucidate the origin of this via detailed study of the film growth, which reveals a unique multi-step film formation process.
AU - Ratnasingham,SR
AU - Mohan,L
AU - Daboczi,M
AU - Degousée,T
AU - Binions,R
AU - Fenwick,O
AU - Kim,J-S
AU - McLachlan,MA
AU - Briscoe,J
DO - 10.1039/d0ma00906g
EP - 1612
PY - 2021///
SP - 1606
TI - Novel scalable aerosol-assisted CVD route for perovskite solar cells
T2 - Materials Advances
UR - http://dx.doi.org/10.1039/d0ma00906g
UR - https://pubs.rsc.org/en/content/articlelanding/2021/MA/D0MA00906G#!divAbstract
UR - http://hdl.handle.net/10044/1/87284
VL - 2
ER -