Imperial College London

ProfessorJohnChambers

Faculty of MedicineSchool of Public Health

Professor of Cardiovascular Medicine & Epidemiology
 
 
 
//

Contact

 

+44 (0)7866 365 776john.chambers

 
 
//

Location

 

172Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

368 results found

Sung YJ, de Las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng C-Y, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu F-C, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee W-J, Lin K-H, Luan J, Lyytikäinen L-P, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Forouhi NG, Franco OH, Friedlander Y, Gao H, Gigante B, Gu CC, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng C-K, Hofman A, Howard BV, Hunt SC, Irvin MR, Jia Y, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh W-P, Koistinen HA, Kooperberg CB, Krieger JE, Kubo M, Kutalik Z, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lee JH, Lehne B, Levy D, Lewis CE, Li Y, Lifelines Cohort Study, Lim SH, Liu C-T, Liu J, Liu J, Liu Y, Loh M, Lohman KK, Louie T, Mägi R, Matsuda K, Meitinger T, Metspalu A, Milani L, Momozawa Y, Mosley TH, Nalls MA, Nasri U, O'Connell JR, Ogunniyi A, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Porteous D, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Sims M, Sitet al., 2019, A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure, Human Molecular Genetics, Vol: 28, Pages: 2615-2633, ISSN: 0964-6906

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene–smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene–smoking interaction analysis and 38 were newly identified (P < 5 × 10−8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.

Journal article

Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Bluher M, Boehnke M, Boeing H, Boerwinkle E, Boger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen Y-DI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Galbany JC, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dube M-P, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki A-E, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe H-J, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland O, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson J-H, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jorgensen ME, Jorgensen T, Jukema JW, Kahali B, Kahn RS, Kahonen M, Kamstrup PR, Kanoni S, Kapriet al., 2019, Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity, Nature Genetics, Vol: 51, Pages: 1191-1192, ISSN: 1061-4036

In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article.

Journal article

Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese A-K, van der Laan SW, Gretarsdottir S, Anderson CD, Chong M, Adams HHH, Ago T, Almgren P, Amouyel P, Ay H, Bartz TM, Benavente OR, Bevan S, Boncoraglio GB, Brown RD, Butterworth AS, Carrera C, Carty CL, Chasman DI, Chen W-M, Cole JW, Correa A, Cotlarciuc I, Cruchaga C, Danesh J, de Bakker PIW, DeStefano AL, den Hoed M, Duan Q, Engelter ST, Falcone GJ, Gottesman RF, Grewal RP, Gudnason V, Gustafsson S, Haessler J, Harris TB, Hassan A, Havulinna AS, Heckbert SR, Holliday EG, Howard G, Hsu F-C, Hyacinth IH, Ikram MA, Ingelsson E, Irvin MR, Jian X, Jimenez-Conde J, Johnson JA, Jukema JW, Kanai M, Keene KL, Kissela BM, Kleindorfer DO, Kooperberg C, Kubo M, Lange LA, Langefeld CD, Langenberg C, Launer LJ, Lee J-M, Lemmens R, Leys D, Lewis CM, Lin W-Y, Lindgren AG, Lorentzen E, Magnusson PK, Maguire J, Manichaikul A, McArdle PF, Meschia JF, Mitchell BD, Mosley TH, Nalls MA, Ninomiya T, O'Donnell MJ, Psaty BM, Pulit SL, Rannikmae K, Reiner AP, Rexrode KM, Rice K, Rich SS, Ridker PM, Rost NS, Rothwell PM, Rotter JI, Rundek T, Sacco RL, Sakaue S, Sale MM, Salomaa V, Sapkota BR, Schmidt R, Schmidt CO, Schminke U, Sharma P, Slowik A, Sudlow CLM, Tanislav C, Tatlisumak T, Taylor KD, Thijs VNS, Thorleifsson G, Thorsteinsdottir U, Tiedt S, Trompet S, Tzourio C, van Duijn CM, Walters M, Wareham NJ, Wassertheil-Smoller S, Wilson JG, Wiggins KL, Yang Q, Yusuf S, Bis JC, Pastinen T, Ruusalepp A, Schadt EE, Koplev S, Bjorkegren JLM, Codoni V, Civelek M, Smith NL, Tregouet DA, Christophersen IE, Roselli C, Lubitz SA, Ellinor PT, Tai ES, Kooner JS, Kato N, He J, van der Harst P, Elliott P, Chambers JC, Takeuchi F, Johnson AD, Sanghera DK, Melander O, Jern C, Strbian D, Fernandez-Cadenas I, Longstreth WT, Rolfs A, Hata J, Woo D, Rosand J, Pare G, Hopewell JC, Saleheen D, Stefansson K, Worrall BB, Kittner SJ, Seshadri S, Fornage M, Markus HS, Howson JMM, Kamatani Y, Debette S, Dichgans Met al., 2019, Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes (vol 50, pg 524, 2018), Nature Genetics, Vol: 51, Pages: 1192-1193, ISSN: 1061-4036

Journal article

Brazel DM, Jiang Y, Hughey JM, Turcot V, Zhan X, Gong J, Batini C, Weissenkampen JD, Liu MZ, Surendran P, Young R, Barnes DR, Nielsen SF, Rasheed A, Samuel M, Zhao W, Kontto J, Perola M, Caslake M, de Craen AJM, Trompet S, Uria-Nickelsen M, Malarstig A, Reily DF, Hoek M, Vogt T, Jukema JW, Sattar N, Ford I, Packard CJ, Alam DS, Majumder AAS, Di Angelantonio E, Chowdhury R, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, EPIC-CVD Consortium, Frossard P, Nordestgaard BG, Saleheen D, Danesh J, Butterworth AS, Howson JMM, Erzurumluoglu AM, Jackson VE, Melbourne CA, Varga TV, Warren HR, Tragante V, Tachmazidou I, Harris SE, Evangelou E, Marten J, Zhang W, Altmaier E, Luan J, Langenberg C, Scott RA, Yaghootkar H, Stirrups K, Kanoni S, Marouli E, Karpe F, Dominiczak AF, Sever P, Poulter N, Rolandsson O, Baumbach C, Afaq S, Chambers JC, Kooner JS, Wareham NJ, Renström F, Hallmans G, Marioni RE, Corley J, Starr JM, Verweij N, de Boer RA, van der Meer P, Yavas E, Vaartjes I, Bots ML, Asselbergs FW, Grabe HJ, Völzke Het al., 2019, Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use, Biological Psychiatry, Vol: 85, Pages: 946-955, ISSN: 0006-3223

Background: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. Methods: We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. Results: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. Conclusions: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.

Journal article

de Vries PS, Brown MR, Bentley AR, Sung YJ, Winkler TW, Ntalla I, Schwander K, Kraja AT, Guo X, Franceschini N, Cheng C-Y, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Aschard H, Bartz TM, Bielak LF, Deng X, Dorajoo R, Lohman KK, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Evangelou E, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu F-C, Jackson AU, Kasturiratne A, Komulainen P, Kühnel B, Laguzzi F, Lee JH, Luan J, Lyytikäinen L-P, Matoba N, Nolte IM, Pietzner M, Riaz M, Said MA, Scott RA, Sofer T, Stancáková A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang Y, Ware EB, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Amin N, Amini M, Arking DE, Aung T, Ballantyne C, Boerwinkle E, Broeckel U, Campbell A, Canouil M, Charumathi S, Chen Y-DI, Connell JM, de Faire U, de Las Fuentes L, de Mutsert R, de Silva HJ, Ding J, Dominiczak AF, Duan Q, Eaton CB, Eppinga RN, Faul JD, Fisher V, Forrester T, Franco OH, Friedlander Y, Ghanbari M, Giulianini F, Grabe HJ, Grove ML, Gu CC, Harris TB, Heikkinen S, Heng C-K, Hirata M, Hixson JE, Howard BV, Ikram MA, InterAct Consortium, Jacobs DR, Johnson C, Jonas JB, Kammerer CM, Katsuya T, Khor CC, Kilpeläinen TO, Koh W-P, Koistinen HA, Kolcic I, Kooperberg C, Krieger JE, Kritchevsky SB, Kubo M, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lemaitre RN, Li Y, Liang J, Liu J, Liu K, Loh M, Louie T, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mohlke KL, Mosley TH, Mukamal KJ, Nalls MA, Nauck M, Nelson CP, Sotoodehnia N, O'Connell JR, Palmer ND, Pazoki R, Pedersen NL, Peters A, Peyser PA, Polasek O, Poulter N, Raffel LJ, Raitakari OT, Reiner AP, Rice TK, Rich SS, Robino A, Robinson JG, Rose LM, Rudan I, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Shi Y, Sidney S, Sims M, Smith BH, Smith JA, Snieder H, Starr JM, Strauch K, Tan N, Taylor KDet al., 2019, Multi-ancestry genome-wide association study of lipid levels incorporating gene-alcohol interactions, American Journal of Epidemiology, Vol: 188, Pages: 1033-1054, ISSN: 1476-6256

An individual's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.

Journal article

Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, Teslovich TM, Caulkins L, Koesterer R, Barajas-Olmos F, Blackwell TW, Boerwinkle E, Brody JA, Centeno-Cruz F, Chen L, Chen S, Contreras-Cubas C, Córdova E, Correa A, Cortes M, DeFronzo RA, Dolan L, Drews KL, Elliott A, Floyd JS, Gabriel S, Garay-Sevilla ME, García-Ortiz H, Gross M, Han S, Heard-Costa NL, Jackson AU, Jørgensen ME, Kang HM, Kelsey M, Kim B-J, Koistinen HA, Kuusisto J, Leader JB, Linneberg A, Liu C-T, Liu J, Lyssenko V, Manning AK, Marcketta A, Malacara-Hernandez JM, Martínez-Hernández A, Matsuo K, Mayer-Davis E, Mendoza-Caamal E, Mohlke KL, Morrison AC, Ndungu A, Ng MCY, O'Dushlaine C, Payne AJ, Pihoker C, Broad Genomics Platform, Post WS, Preuss M, Psaty BM, Vasan RS, Rayner NW, Reiner AP, Revilla-Monsalve C, Robertson NR, Santoro N, Schurmann C, So WY, Soberón X, Stringham HM, Strom TM, Tam CHT, Thameem F, Tomlinson B, Torres JM, Tracy RP, van Dam RM, Vujkovic M, Wang S, Welch RP, Witte DR, Wong T-Y, Atzmon G, Barzilai N, Blangero J, Bonnycastle LL, Bowden DW, Chambers JC, Chan E, Cheng C-Y, Cho YS, Collins FS, de Vries PS, Duggirala R, Glaser B, Gonzalez C, Gonzalez ME, Groop L, Kooner JS, Kwak SH, Laakso M, Lehman DM, Nilsson P, Spector TD, Tai ES, Tuomi T, Tuomilehto J, Wilson JG, Aguilar-Salinas CA, Bottinger E, Burke B, Carey DJ, Chan JCN, Dupuis J, Frossard P, Heckbert SR, Hwang MY, Kim YJ, Kirchner HL, Lee J-Y, Lee J, Loos RJF, Ma RCW, Morris AD, O'Donnell CJ, Palmer CNA, Pankow J, Park KS, Rasheed A, Saleheen D, Sim X, Small KS, Teo YY, Haiman C, Hanis CL, Henderson BE, Orozco L, Tusié-Luna T, Dewey FE, Baras A, Gieger C, Meitinger T, Strauch K, Lange L, Grarup N, Hansen T, Pedersen O, Zeitler P, Dabelea D, Abecasis G, Bell GI, Cox NJ, Seielstad M, Sladek R, Meigs JB, Rich SS, Rotter JI, DiscovEHR Collaboration, CHARGE, LuCamp, ProDiGY, GoT2D ESP, SIGMA-T2D, T2D-GENES, AMP-T2D-GENES, Altshuler D, Burtt NP, Scott LJ, Morris AP, Florez JC, McCarthy MI, Boehnke Met al., 2019, Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls, Nature, Vol: 570, Pages: 71-76, ISSN: 0028-0836

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.

Journal article

Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, Kirsten H, Giri A, Chai J-F, Sveinbjornsson G, Tayo BO, Nutile T, Fuchsberger C, Marten J, Cocca M, Ghasemi S, Xu Y, Horn K, Noce D, Van der Most PJ, Sedaghat S, Yu Z, Akiyama M, Afaq S, Ahluwalia TS, Almgren P, Amin N, Arnlov J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boehnke M, Boerwinkle E, Boissel M, Bottinger EP, Boutin TS, Brenner H, Brumat M, Burkhardt R, Butterworth AS, Campana E, Campbell A, Campbell H, Canouil M, Carroll RJ, Catamo E, Chambers JC, Chee M-L, Chee M-L, Chen X, Cheng C-Y, Cheng Y, Christensen K, Cifkova R, Ciullo M, Concas MP, Cook JP, Coresh J, Corre T, Sala CF, Cusi D, Danesh J, Daw EW, De Borst MH, De Grandi A, De Mutsert R, De Vries APJ, Degenhardt F, Delgado G, Demirkan A, Di Angelantonio E, Dittrich K, Divers J, Dorajoo R, Eckardt K-U, Ehret G, Elliott P, Endlich K, Evans MK, Felix JF, Foo VHX, Franco OH, Franke A, Freedman BI, Freitag-Wolf S, Friedlander Y, Froguel P, Gansevoort RT, Gao H, Gasparini P, Gaziano JM, Giedraitis V, Gieger C, Girotto G, Giulianini F, Gogele M, Gordon SD, Gudbjartsson DF, Gudnason V, Haller T, Hamet P, Harris TB, Hartman CA, Hayward C, Hellwege JN, Heng C-K, Hicks AA, Hofer E, Huang W, Hutri-Kahonen N, Hwang S-J, Ikram MA, Indridason OS, Ingelsson E, Ising M, Jaddoe VWV, Jakobsdottir J, Jonas JB, Joshi PK, Josyula NS, Jung B, Kahonen M, Kamatani Y, Kammerer CM, Kanai M, Kastarinen M, Kerr SM, Khor C-C, Kiess W, Kleber ME, Koenig W, Kooner JS, Korner A, Kovacs P, Kraja AT, Krajcoviechova A, Kramer H, Kramer BK, Kronenberg F, Kubo M, Kuhnel B, Kuokkanen M, Kuusisto J, La Bianca M, Laakso M, Lange LA, Langefeld CD, Lee JJ-M, Lehne B, Lehtimaki T, Lieb W, Lim S-C, Lind L, Lindgren CM, Liu J, Liu J, Loeffler M, Loos RJF, Lucae S, Lukas MA, Lyytikainen L-P, Magi R, Magnusson PKE, Mahajan A, Martin NG, Martins J, Marz W, Mascalzoni D, Matsuda K, Meisinger C, Meitinger T, Melander O, Metspalu A, Mikaelset al., 2019, A catalog of genetic loci associated with kidney function from analyses of a million individuals, Nature Genetics, Vol: 51, Pages: 957-972, ISSN: 1061-4036

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.

Journal article

De Silva NMG, Borges MC, Hingorani A, Engmann J, Shah T, Zhang X, Luan J, Langenberg C, Wong A, Kuh D, Chambers JC, Zhang W, Jarvelin M-R, Sebert S, Auvinen J, UCLEB consortium, Gaunt TR, Lawlor DAet al., 2019, Liver function and risk of type 2 diabetes: bidirectional mendelian randomization study., Diabetes, Vol: 68, Pages: 1681-1691, ISSN: 0012-1797

Liver dysfunction and type 2 diabetes (T2D) are consistently associated. However, it is currently unknown whether liver dysfunction contributes to, results from or is merely correlated with T2D due to confounding. We used Mendelian randomization (MR) to investigate the presence and direction of any causal relation between liver function and T2D risk including up to 64,094 T2D cases and 607,012 controls. Several biomarkers were used as proxies of liver function [i.e. alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT)]. Genetic variants strongly associated with each liver function marker were used to investigate the effect of liver function on T2D risk. In addition, genetic variants strongly associated with T2D risk and with fasting insulin were used to investigate the effect of predisposition to T2D and insulin resistance, respectively, on liver function. Genetically predicted higher circulating ALT and AST were related to increased risk of T2D. There was a modest negative association of genetically predicted ALP with T2D risk and no evidence of association between GGT and T2D risk. Genetically predisposition to higher fasting insulin, but not to T2D, was related to increased circulating ALT. Since circulating ALT and AST are markers of NAFLD, these findings provide some support for insulin resistance resulting in NAFLD, which in turn increases T2D risk.

Journal article

Afaq S, Kooner AS, Loh M, Kooner JS, Chambers Jet al., 2019, Contribution of lower physical activity levels to higher risk of Insulin resistance and associated metabolic disturbances in South Asians compared to Europeans, PLoS ONE, Vol: 14, ISSN: 1932-6203

BackgroundInsulin resistance and related metabolic disturbances are major risk factors for the higher T2D risk and associated morbidity and mortality amongst South Asians. The contribution of physical activity to the increased prevalence of insulin resistance and related disturbances amongst South Asians is unknown.MethodsWe recruited 902 South Asian and European men and women, aged 35–85 years from the ongoing LOLIPOP study. Clinical characterisation comprised standardised questionnaire and measurement of height, weight, waist and hip circumference and blood pressure. Fasting bloods were taken for assessment of glucose, insulin, lipids and HbA1c. Physical activity was quantified using a validated accelerometer, Actigraph GT3X+, worn for 7 days. Univariate and multivariate approaches were used to investigate the relationship between ethnicity, physical activity, insulin resistance and related metabolic disturbances.ResultsTotal physical activity was ~31% (P = 0.01) lower amongst South Asians compared to Europeans (Mean MET.minutes [SD]: 1505.2 [52] vs. 2050.9 [86.6], P<0.001). After adjusting for age and sex, total physical activity had a negative association with HOMA-IR (B [SE]: -0.18 [0.08], P = 0.04) and fasting glucose levels (B[SE]: -0.11 [0.04], P = 0.02). There was no association between physical activity and other glycemic and lipid parameters. Total physical activity per week contributed towards the differences in insulin resistance and associated metabolic disturbances between South Asians and Europeans.ConclusionLower levels of physical activity may contribute to the increased insulin resistance in South Asians compared to Europeans. Our results suggest that lifestyle modification through increased physical activity may help to improve glucose metabolism and reduce the burden of excess T2D and related complications amongst South Asians.

Journal article

Yang Y, van der Klaauw AA, Zhu L, Cacciottolo TM, He Y, Stadler LKJ, Wang C, Xu P, Saito K, Hinton A, Yan X, Keogh JM, Henning E, Banton MC, Hendricks AE, Bochukova EG, Mistry V, Lawler KL, Liao L, Xu J, O'Rahilly S, Tong Q, Barroso I, O'Malley BW, Farooqi IS, Xu Y, Balasubramanian S, Clapham P, Coates G, Cox T, Daly A, Danecek P, Du Y, Durbin R, Edkins S, Ellis P, Flicek P, Guo X, Guo X, Huang L, Jackson DK, Joyce C, Keane T, Kolb-Kokocinski A, Langford C, Li Y, Liang J, Lin H, Liu R, Maslen J, McCarthy S, Muddyman D, Quail MA, Stalker J, Sun J, Tian J, Wang G, Wang J, Wang Y, Wong K, Zhang P, Birney E, Boustred C, Brion M-J, Chen L, Clement G, Danecek P, Smith GD, Day INM, Day-Williams A, Down T, Dunham I, Durbin R, Evans DM, Fatemifar G, Gaunt TR, Geihs M, Greenwood CMT, Hart D, Howie B, Huang J, Hubbard T, Hysi P, Iotchkova V, Jamshidi Y, Kemp JP, Lachance G, Lawson D, Lek M, Lopes M, MacArthur DG, Marchini J, Massimo M, Mathieson I, McCarthy S, Memari Y, Metrustry S, Min JL, Moayyeri A, Muddyman D, Northstone K, Panoutsopoulou K, Paternoster L, Perry JRB, Quaye L, Richards JB, Ring S, Ritchie GRS, Schiffels S, Shihab HA, Shin S-Y, Small KS, Artigas MS, Soranzo N, Southam L, Spector TD, St Pourcain B, Surdulescu G, Tachmazidou I, Timpson NJ, Tobin MD, Valdes AM, Visscher PM, Wain LV, Walter K, Ward K, Wilson SG, Wong K, Yang J, Zeggini E, Zhang F, Zheng H-F, Anney R, Ayub M, Barrett JC, Blackwood D, Bolton PF, Breen G, Collier DA, Craddock N, Crooks L, Curran S, Curtis D, Durbin R, Gallagher L, Geschwind D, Gurling H, Holmans P, Lee I, Lonnqvist J, McCarthy S, McGuffin P, McIntosh AM, McKechanie AG, McQuillin A, Morris J, Muddyman D, O'Donovan MC, Owen MJ, Palotie A, Parr JR, Paunio T, Pietilainen O, Rehnstrom K, Sharp SI, Skuse D, St Clair D, Suvisaari J, Walters JTR, Williams HJ, Bochukova E, Bounds R, Dominiczak A, Durbin R, Keogh J, Marenne G, McCarthy S, Morris A, Muddyman D, Porteous DJ, Smith BH, Tachmazidou I, Wheeler E, Zeggini E, Al Turki S, Anderson Cet al., 2019, Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis, NATURE COMMUNICATIONS, Vol: 10, ISSN: 2041-1723

Journal article

Bentley AR, Sung YJ, Brown MR, Winkler TW, Kraja AT, Ntalla I, Schwander K, Chasman D, Lim E, Deng X, Guo X, Liu J, Lu Y, Cheng C-Y, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Baker J, Chen G, Aschard H, Bartz TM, Ding J, Dorajoo R, Manning AK, Rankinen T, Smith A, Tajuddin SM, Zhao W, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Evangelou E, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu F-C, Hung Y-J, Jackson AU, Kasturiratne A, Komulainen P, Kuehnel B, Leander K, Lin K-H, Luan J, Lyytikainen L-P, Matoba N, Nolte IM, Pietzner M, Prins B, Riaz M, Robino A, Said MA, Schupf N, Scott RA, Sofer T, Stancakova A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang T-D, Wang Y, Ware EB, Wen W, Xiang Y-B, Yanek LR, Zhang W, Zhao JH, Adeyemo A, Afaq S, Amin N, Amini M, Arking DE, Arzumanyan Z, Aung T, Ballantyne C, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Broeckel U, Brown M, Cade BE, Campbell A, Canouil M, Charumathi S, Chen Y-DI, Christensen K, Concas MP, Connell JM, de las Fuentes L, de Silva HJ, de Vries PS, Doumatey A, Duan Q, Eaton CB, Eppinga RN, Faul JD, Floyd JS, Forouhi NG, Forrester T, Friedlander Y, Gandin I, Gao H, Ghanbari M, Gharib SA, Gigante B, Giulianini F, Grabe HJ, Gu CC, Harris TB, Heikkinen S, Heng C-K, Hirata M, Hixson JE, Ikram MA, Jia Y, Joehanes R, Johnson C, Jonas JB, Justice AE, Katsuya T, Khor CC, Kilpelainen TO, Koh W-P, Kolcic I, Kooperberg C, Krieger JE, Kritchevsky SB, Kubo M, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lewis CE, Li Y, Liang J, Lin S, Liu C-T, Liu J, Liu K, Loh M, Lohman KK, Louie T, Luzzi A, Magi R, Mahajan A, Manichaikul AW, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mohlke KL, Momozawa Y, Morris AP, Murray AD, Nalls MA, Nauck M, Nelson CP, North KE, O'Connell JR, Palmer ND, Papanicolau GJ, Pedersen NL, Peters A, Peyser PA, Polasek O, Poulter N, Raitakari OT, Reiner AP, Renstrom F, Rice TKet al., 2019, Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids, Nature Genetics, Vol: 51, Pages: 636-648, ISSN: 1061-4036

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene–smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

Journal article

Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen Y-DI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Angelantonio ED, Dörr M, Drenos F, Dubé M-P, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki A-E, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung Y-J, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee W-J, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin L-A, Lin X, Lind L, Lindström J, Linneberg A, Liu C-T, Liu DJ, Luan J, Lyytikäinen L-P, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers THet al., 2019, Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution, Nature Genetics, Vol: 51, Pages: 452-469, ISSN: 1061-4036

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.

Journal article

Karasik D, Zillikens MC, Hsu Y-H, Aghdassi A, Akesson K, Amin N, Barroso I, Bennett DA, Bertram L, Bochud M, Borecki IB, Broer L, Buchman AS, Byberg L, Campbell H, Campos-Obando N, Cauley JA, Cawthon PM, Chambers JC, Chen Z, Cho NH, Choi HJ, Chou W-C, Cummings SR, de Groot LCPGM, De Jager PL, Demuth I, Diatchenko L, Econs MJ, Eiriksdottir G, Enneman AW, Eriksson J, Eriksson JG, Estrada K, Evans DS, Feitosa MF, Fu M, Gieger C, Grallert H, Gudnason V, Lenore LJ, Hayward C, Hofman A, Homuth G, Huffman KM, Husted LB, Illig T, Ingelsson E, Ittermann T, Jansson J-O, Johnson T, Biffar R, Jordan JM, Jula A, Karlsson M, Khaw K-T, Kilpelainen TO, Klopp N, Kloth JSL, Koller DL, Kooner JS, Kraus WE, Kritchevsky S, Kutalik Z, Kuulasmaa T, Kuusisto J, Laakso M, Lahti J, Lang T, Langdahl BL, Lerch MM, Lewis JR, Lill C, Lind L, Lindgren C, Liu Y, Livshits G, Ljunggren O, Loos RJF, Lorentzon M, Luan J, Luben RN, Malkin I, McGuigan FE, Medina-Gomez C, Meitinger T, Melhus H, Mellstrom D, Michaelsson K, Mitchell BD, Morris AP, Mosekilde L, Nethander M, Newman AB, O'Connell JR, Oostra BA, Orwoll ES, Palotie A, Peacock M, Perola M, Peters A, Prince RL, Psaty BM, Raikkonen K, Ralston SH, Ripatti S, Rivadeneira F, Robbins JA, Rotter JI, Rudan I, Salomaa V, Satterfield S, Schipf S, Shin CS, Smith AV, Smith SB, Soranzo N, Spector TD, Stancakova A, Stefansson K, Steinhagen-Thiessen E, Stolk L, Streeten EA, Styrkarsdottir U, Swart KMA, Thompson P, Thomson CA, Thorleifsson G, Thorsteinsdottir U, Tikkanen E, Tranah GJ, Uitterlinden AG, van Duijn CM, van Schoor NM, Vandenput L, Vollenweider P, Volzke H, Wactawski-Wende J, Walker M, Wareham NJ, Waterworth D, Weedon MN, Wichmann H-E, Widen E, Williams FMK, Wilson JF, Wright NC, Yerges-Armstrong LM, Yu L, Zhang W, Zhao JH, Zhou Y, Nielson CM, Harris TB, Demissie S, Kiel DP, Ohlsson Cet al., 2019, Disentangling the genetics of lean mass, AMERICAN JOURNAL OF CLINICAL NUTRITION, Vol: 109, Pages: 276-287, ISSN: 0002-9165

BackgroundLean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass.ObjectivesTo determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci.MethodsWe performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms).ResultsSeven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as “sumo wrestler” loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed “body builder” loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in “body builder” loci were associated with metabolic protection.ConclusionsIn conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.

Journal article

Tynkkynen T, Wang Q, Ekholm J, Anufrieva O, Ohukainen P, Vepsäläinen J, Männikkö M, Keinänen-Kiukaanniemi S, Holmes MV, Goodwin M, Ring S, Chambers JC, Kooner J, Järvelin M-R, Kettunen J, Hill M, Davey Smith G, Ala-Korpela Met al., 2019, Proof of concept for quantitative urine NMR metabolomics pipeline for large-scale epidemiology and genetics, International Journal of Epidemiology, Vol: 48, Pages: 978-993, ISSN: 1464-3685

Background: Quantitative molecular data from urine are rare in epidemiology and genetics. NMR spectroscopy could provide these data in high throughput, and it has already been applied in epidemiological settings to analyse urine samples. However, quantitative protocols for large-scale applications are not available. Methods: We describe in detail how to prepare urine samples and perform NMR experiments to obtain quantitative metabolic information. Semi-automated quantitative line shape fitting analyses were set up for 43 metabolites and applied to data from various analytical test samples and from 1004 individuals from a population-based epidemiological cohort. Novel analyses on how urine metabolites associate with quantitative serum NMR metabolomics data (61 metabolic measures; n = 995) were performed. In addition, confirmatory genome-wide analyses of urine metabolites were conducted (n = 578). The fully automated quantitative regression-based spectral analysis is demonstrated for creatinine and glucose (n = 4548). Results: Intra-assay metabolite variations were mostly <5%, indicating high robustness and accuracy of urine NMR spectroscopy methodology per se. Intra-individual metabolite variations were large, ranging from 6% to 194%. However, population-based inter-individual metabolite variations were even larger (from 14% to 1655%), providing a sound base for epidemiological applications. Metabolic associations between urine and serum were found to be clearly weaker than those within serum and within urine, indicating that urinary metabolomics data provide independent metabolic information. Two previous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-wide significance. Conclusion: Quantitative urine metabolomics data suggest broad novelty for systems epidemiology. A roadmap for an open access methodology is provided.

Journal article

Adlam D, Olson TM, Combaret N, Kovacic JC, Iismaa SE, Al-Hussaini A, O'Byrne MM, Bouajila S, Georges A, Mishra K, Braund PS, d'Escamard V, Huang S, Margaritis M, Nelson CP, de Andrade M, Kadian-Dodov D, Welch CA, Mazurkiewicz S, Jeunemaitre X, DISCO Consortium, Wong CMY, Giannoulatou E, Sweeting M, Muller D, Wood A, McGrath-Cadell L, Fatkin D, Dunwoodie SL, Harvey R, Holloway C, Empana J-P, Jouven X, CARDIoGRAMPlusC4D Study Group, Olin JW, Gulati R, Tweet MS, Hayes SN, Samani NJ, Graham RM, Motreff P, Bouatia-Naji Net al., 2019, Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection., J Am Coll Cardiol, Vol: 73, Pages: 58-66

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. OBJECTIVES: This study sought to test the association between the rs9349379 genotype and SCAD. METHODS: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. RESULTS: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. CONCLUSIONS: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD.

Journal article

Parmar P, Lowry E, Cugliari G, Suderman M, Wilson R, Karhunen V, Andrew T, Wiklund P, Wielscher M, Guarrera S, Teumer A, Lehne B, Milani L, de Klein N, Mishra PP, Melton PE, Mandaviya PR, Kasela S, Nano J, Zhang W, Zhang Y, Uitterlinden AG, Peters A, Schoettker B, Gieger C, Anderson D, Boomsma D, Grabe HJ, Panico S, Veldink JH, van Meurs JBJ, van den Berg L, Beilin LJ, Franke L, Loh M, van Greevenbroek MMJ, Nauck M, Kahonen M, Hurme MA, Raitakari OT, Franco OH, Slagboom PE, van der Harst P, Kunze S, Felix SB, Zhang T, Chen W, Mori TA, Bonnefond A, Heijmans BT, Muka T, Kooner JS, Fischer K, Waldenberger M, Froguel P, Huang R-C, Lehtimaki T, Rathmann W, Relton CL, Matullo G, Brenner H, Verweij N, Li S, Chambers JC, Jarvelin M-R, Sebert Set al., 2018, Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults, EBioMedicine, Vol: 38, Pages: 206-216, ISSN: 2352-3964

BackgroundDNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health.MethodsWe meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n = 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL—C), triglycerides (TG), diastolic, and systolic blood pressure (BP).FindingsLower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0·012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 × 10−7 < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 × 10−8 < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels.InterpretationEpigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors.

Journal article

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Fu LN, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Edwards DRV, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Magi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin W-Y, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Theriault S, Verweij N, Willems SM, Zhao J-H, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Pare G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco FM, Demirkale CY, Dorr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Franberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga J-J, Huffman JE, Hwang S-J, Ingelsson E, James A, Jansen R, Jarvelin M-R, Joehanes R, Johansson A, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kahonen M, Kathiresan S, Keavney BD, Khaw K-T, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimaki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikainen L-P, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perolet al., 2018, Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits (vol 50, pg 1412, 2018), NATURE GENETICS, Vol: 50, Pages: 1755-1755, ISSN: 1061-4036

Journal article

Bentley AR, Evangelou E, Zhang W, Afaq S, Lehne B, Poulter N, Sever P, Chambers J, Elliott P, Froguel P, Scott J, Cupples Aet al., 2018, Multi-ancestry genome-wide smoking interaction study of 387,272 individuals identifies novel lipid loci., Nature Genetics, ISSN: 1061-4036

Serum lipids, such as triglycerides (TG) and high- and low-density lipoprotein cholesterol (HDL and LDL), are influenced by both genetic and lifestyle factors. Over 250 lipid loci have been identified,1-6 yet, it is unclear to what extent lifestyle factors modify the effects of these variants, or those yet to be identified. Smoking is associated with an unfavorable lipid profile,7,8 warranting its investigation as a lifestyle factor that potentially modifies genetic associations with lipids. Identifying interactions using traditional 1 degree of freedom (1df) tests of SNP x smoking terms may have low power, except in very large sample sizes. To enhance the detection of loci, a 2 degree of freedom (2df) test that jointly evaluates the interaction and main effects was developed.9 The Gene-Lifestyle Interactions Working Group, under the aegis of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium10, was formed to conduct analyses of lifestyle interactions in the genetic basis of cardiovascular traits. As both genetic and lifestyle factors differ across populations with different ancestry backgrounds, and to address the underrepresentation of non-European populations in genomic research, great effort went into creating a large, multi-ancestry resource for these investigations.11 Here, we report a genome-wide interaction study that uses both the 1df test of interaction and the 2df joint test of main and interaction effects to test the hypothesis that genetic associations of serum lipids differ by smoking status.

Journal article

Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, Narita A, Saw W-Y, Moon S, Spracklen CN, Chai J-F, Kim Y-J, Zhang L, Wang C, Li H, Li H, Wu J-Y, Dorajoo R, Nierenberg JL, Wang YX, He J, Bennett DA, Takahashi A, Momozawa Y, Hirata M, Matsuda K, Rakugi H, Nakashima E, Isono M, Shirota M, Hozawa A, Ichihara S, Matsubara T, Yamamoto K, Kohara K, Igase M, Han S, Gordon-Larsen P, Huang W, Lee NR, Adair LS, Hwang MY, Lee J, Chee ML, Sabanayagam C, Zhao W, Liu J, Reilly DF, Sun L, Huo S, Edwards TL, Long J, Chang L-C, Chen C-H, Yuan J-M, Koh W-P, Friedlander Y, Kelly TN, Wei WB, Xu L, Cai H, Xiang Y-B, Lin K, Clarke R, Walters RG, Millwood IY, Li L, Chambers JC, Kooner JS, Elliott P, van der Harst P, Chen Z, Sasaki M, Shu X-O, Jonas JB, He J, Heng C-K, Chen Y-T, Zheng W, Lin X, Teo Y-Y, Tai E-S, Cheng C-Y, Wong TY, Sim X, Mohlke KL, Yamamoto M, Kim B-J, Miki T, Nabika T, Yokota M, Kamatani Y, Kubo M, Kato Net al., 2018, Interethnic analyses of blood pressure loci in populations of East Asian and European descent., Nature Communications, Vol: 9, ISSN: 2041-1723

Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.

Journal article

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Fu LN, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Edwards DRV, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Magi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin W-Y, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Theriault S, Verweij N, Willems SM, Zhao J-H, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Pare G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco FM, Demirkale CY, Dorr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Franberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga J-J, Huffman JE, Hwang S-J, Ingelsson E, James A, Jansen R, Jarvelin M-R, Joehanes R, Johansson A, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kahonen M, Kathiresan S, Keavney BD, Khaw K-T, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimaki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikainen L-P, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perolet al., 2018, Publisher correction: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits, Nature Genetics, Vol: 50, Pages: 1755-1755, ISSN: 1061-4036

Correction to: Nature Genetics https://doi.org/10.1038/s41588-018-0205-x, published online 17 September 2018.

Journal article

Iotchkova V, Huang J, Morris JA, Jain D, Barbieri C, Walter K, Min JL, Chen L, Astle W, Cocca M, Deelen P, Elding H, Farmaki A-E, Franklin CS, Franberg M, Gaunt TR, Hofman A, Jiang T, Kleber ME, Lachance G, Luan J, Malerba G, Matchan A, Mead D, Memari Y, Ntalla I, Panoutsopoulou K, Pazoki R, Perry JRB, Rivadeneira F, Sabater-Lleal M, Sennblad B, Shin S-Y, Southam L, Traglia M, van Dijk F, van Leeuwen EM, Zaza G, Zhang W, Amin N, Butterworth A, Chambers JC, Dedoussis G, Dehghan A, Franco OH, Franke L, Frontini M, Gambaro G, Gasparini P, Hamsten A, Isaacs A, Kooner JS, Kooperberg C, Langenberg C, Marz W, Scott RA, Swertz MA, Toniolo D, Uitterlinden AG, van Duijn CM, Watkins H, Zeggini E, Maurano MT, Timpson NJ, Reiner AP, Auer PL, Soranzo Net al., 2018, Author Correction: Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps, Nature Genetics, Vol: 50, Pages: 1752-1752, ISSN: 1061-4036

Correction to: Nature Genetics https://doi.org/10.1038/ng.3668, published online 26 September 2016.In the version of the article published, the surname of author Aaron Isaacs is misspelled as Issacs.

Journal article

Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Magill R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss MH, Prins BP, Guo X, Bielak LF, Below JE, Bowden DW, Chambers JC, Kim YJ, Ng MCY, Petty LE, Sim X, Zhang W, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Kardt K-UE, Fischer K, Kardia SLR, Kronenberg F, Lall K, Liu C-T, Locke AE, Luan J, Ntalla L, Nylander V, Schoenherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, Ford I, France OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jorgensen ME, Jorgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stancakova A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Koettgen A, Abecasis GR, Meigs JB, Rotter J, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M, McCarthy Met al., 2018, Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps, Nature Genetics, Vol: 50, Pages: 1505-1515, ISSN: 1061-4036

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

Journal article

Ligthart S, Vaez A, Vosa U, Stathopoulou MG, de Vries PS, Prins BP, Van der Most PJ, Tanaka T, Naderi E, Rose LM, Wu Y, Karlsson R, Barbalic M, Lin H, Pool R, Zhu G, Mace A, Sidore C, Trompet S, Mangino M, Sabater-Lleal M, Kemp JP, Abbasi A, Kacprowski T, Verweij N, Smith AV, Huang T, Marzi C, Feitosa MF, Lohman KK, Kleber ME, Milaneschi Y, Mueller C, Huq M, Vlachopoulou E, Lyytikainen L-P, Oldmeadow C, Deelen J, Perola M, Zhao JH, Feenstra B, Amini M, Lahti J, Schraut KE, Fornage M, Suktitipat B, Chen W-M, Li X, Nutile T, Malerba G, Luan J, Bak T, Schork N, Del Greco FM, Thiering E, Mahajan A, Marioni RE, Mihailov E, Eriksson J, Ozel AB, Zhang W, Nethander M, Cheng Y-C, Aslibekyan S, Ang W, Gandin I, Yengo L, Portas L, Kooperberg C, Hofer E, Rajan KB, Schurmann C, den Hollander W, Ahluwalia TS, Zhao J, Draisma HHM, Ford I, Timpson N, Teumer A, Huang H, Wahl S, Liu Y, Huang J, Uh H-W, Geller F, Joshi PK, Yanek LR, Trabetti E, Lehne B, Vozzi D, Verbanck M, Biino G, Saba Y, Meulenbelt I, O'Connell JR, Laakso M, Giulianini F, Magnusson PKE, Ballantyne CM, Hottenga JJ, Montgomery G, Rivadineira F, Rueedi R, Steri M, Herzig K-H, Stott DJ, Menni C, Franberg M, St Pourcain B, Felix SB, Pers TH, Bakker SJL, Kraft P, Peters A, Vaidya D, Delgado G, Smit JH, Grossmann V, Sinisalo J, Seppala I, Williams SR, Holliday EG, Moed M, Langenberg C, Raikkonen K, Ding J, Campbell H, Sale MM, Chen Y-DI, James AL, Ruggiero D, Soranzo N, Hartman CA, Smith EN, Berenson GS, Fuchsberger C, Hernandez D, Tiesler CMT, Giedraitis V, Liewald D, Fischer K, Mellstrom D, Larsson A, Wang Y, Scott WR, Lorentzon M, Beilby J, Ryan KA, Pennell CE, Vuckovic D, Balkau B, Concas MP, Schmidt R, de Leon CFM, Bottinger EP, Kloppenburg M, Paternoster L, Boehnke M, Musk AW, Willemsen G, Evans DM, Madden PAF, Kahonen M, Kutalik Z, Zoledziewska M, Karhunen V, Kritchevsky SB, Sattar N, Lachance G, Clarke R, Harris TB, Raitakari OT, Attia JR, Van Heemst D, Kajantie E, Sorice R, Gambaro G, Scott RA, Hicks AA, Ferrucciet al., 2018, Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders, American Journal of Human Genetics, Vol: 103, Pages: 691-706, ISSN: 0002-9297

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10−8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

Journal article

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Fu LN, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Edwards DRV, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Magi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin W-Y, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Theriault S, Verweij N, Willems SM, Zhao J-H, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Pare G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco FM, Demirkale CY, Dorr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Franberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga J-J, Huffman JE, Hwang S-J, Ingelsson E, James A, Jansen R, Jarvelin M-R, Joehanes R, Johansson A, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kahonen M, Kathiresan S, Keavney BD, Khaw K-T, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimaki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikainen L-P, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perolet al., 2018, Genetic analysis of over one million people identifies 535 new loci associated with blood pressure traits, Nature Genetics, Vol: 50, Pages: 1412-1425, ISSN: 1061-4036

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

Journal article

Daniels SI, Chambers JC, Sanchez SS, La Merrill MA, Hubbard AE, Macherone A, McMullin M, Zhang L, Elliott P, Smith MT, Kooner Jet al., 2018, Elevated levels of organochlorine pesticides in South Asian immigrants are associated with an increased risk of diabetes, Journal of the Endocrine Society, Vol: 2, Pages: 832-841, ISSN: 2472-1972

ObjectiveRates of diabetes mellitus are higher in South Asians than in other populations and persist after migration. One unexplored cause may be higher exposure to persistent organic pollutants associated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations in South Asian immigrants and European whites to determine whether the disease was positively associated with OC pesticides in South Asians.Research Design and MethodsSouth Asians of Tamil or Telugu descent (n = 120) and European whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as well as biometric, clinical, and survey data were collected. Plasma levels of p,p′-dichlorodiphenyldichloroethylene (DDE), p,p′- dichlorodiphenyltrichloroethane, β-hexachlorohexane (HCH), and polychlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases and controls were categorized by binary exposure (above vs below the 50th percentile) to perform logistic regression.ResultsTamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p′-DDE above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR: 7.00; 95% CI: 2.22, 22.06). The odds of exposure to β-HCH above the 50th percentile was significantly greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97).ConclusionsSouth Asian immigrants have a higher body burden of OC pesticides than European whites. Diabetes mellitus is associated with higher p,p′-DDE and β-HCH concentrations in this population. Additional longitudinal studies of South Asian populations should be performed.

Journal article

Feitosa M, Kraja A, Zhang W, Evangelou E, Gao H, Scott W, Sever P, Chambers J, Froguel P, Scott J, Elliott P, Levy Det al., 2018, Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570,000 individuals across multiple ancestries, PLoS ONE, Vol: 13, ISSN: 1932-6203

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

Journal article

Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, Gan W, Kitajima H, Taliun D, Rayner NW, Guo X, Lu Y, Li M, Jensen RA, Hu Y, Huo S, Lohman KK, Zhang W, Cook JP, Prins BP, Flannick J, Grarup N, Trubetskoy VV, Kravic J, Kim YJ, Rybin DV, Yaghootkar H, Mueller-Nurasyid M, Meidtner K, Li-Gao R, Varga TV, Marten J, Li J, Smith AV, An P, Ligthart S, Gustafsson S, Malerba G, Demirkan A, Tajes JF, Steinthorsdottir V, Wuttke M, Lecoeur C, Preuss M, Bielak LF, Graff M, Highland HM, Justice AE, Liu DJ, Marouli E, Peloso GM, Warren HR, Afaq S, Afzal S, Ahlqvist E, Almgren P, Amin N, Bang LB, Bertoni AG, Bombieri C, Bork-Jensen J, Brandslund I, Brody JA, Burtt NP, Canouil M, Chen Y-DI, Cho YS, Christensen C, Eastwood SV, Eckardt K-U, Fischer K, Gambaro G, Giedraitis V, Grove ML, de Haan HG, Hackinger S, Hai Y, Han S, Tybjaerg-Hansen A, Hivert M-F, Isomaa B, Jager S, Jorgensen ME, Jorgensen T, Karajamaki A, Kim B-J, Kim SS, Koistinen HA, Kovacs P, Kriebel J, Kronenberg F, Lall K, Lange LA, Lee J-J, Lehne B, Li H, Lin K-H, Linneberg A, Liu C-T, Liu J, Loh M, Magi R, Mamakou V, McKean-Cowdin R, Nadkarni G, Neville M, Nielsen SF, Ntalla I, Peyser PA, Rathmann W, Rice K, Rich SS, Rode L, Rolandsson O, Schonherr S, Selvin E, Small KS, Stancakova A, Surendran P, Taylor KD, Teslovich TM, Thorand B, Thorleifsson G, Tin A, Tonjes A, Varbo A, Witte DR, Wood AR, Yajnik P, Yao J, Yengo L, Young R, Amouyel P, Boeing H, Boerwinkle E, Bottinger EP, Chowdhury R, Collins FS, Dedoussis G, Dehghan A, Deloukas P, Ferrario MM, Ferrieres J, Florez JC, Frossard P, Gudnason V, Harris TB, Heckbert SR, Howson JMM, Ingelsson M, Kathiresan S, Kee F, Kuusisto J, Langenberg C, Launer LJ, Lindgren CM, Mannisto S, Meitinger T, Melander O, Mohlke KL, Moitry M, Morris AD, Murray AD, de Mutsert R, Orho-Melander M, Owen KR, Perola M, Peters A, Province MA, Rasheed A, Ridker PM, Rivadineira F, Rosendaal FR, Rosengren AH, Salomaa V, Sheu WH-H, Sladek R, Smith BH, Strauch K, Uitterlinden AG, Varma R, Wilet al., 2018, Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes, Nature Genetics, Vol: 50, Pages: 559-559, ISSN: 1061-4036

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Journal article

Turcot V, Chambers J, Elliott P, Evangelou E, Kooner J, Zhang W, Loos Ret al., 2017, Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity., Nature Genetics, Vol: 50, Pages: 26-41, ISSN: 1061-4036

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

Journal article

Flannick J, Froguel P, Prokopenko I, Lehne B, Kooner JS, Chambers J, Scott J, Loh M, Elliott P, Zhang W, Scott W, Nagai Yet al., 2017, Sequence data and association statistics from 12,940 type 2 diabetes cases and controls, Scientific Data, Vol: 4, ISSN: 2052-4463

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.

Journal article

Márquez-Luna C, Loh P-R, South Asian Type 2 Diabetes SAT2D Consortium, SIGMA Type 2 Diabetes Consortium, Price ALet al., 2017, Multiethnic polygenic risk scores improve risk prediction in diverse populations., Genet Epidemiol, Vol: 41, Pages: 811-823

Methods for genetic risk prediction have been widely investigated in recent years. However, most available training data involves European samples, and it is currently unclear how to accurately predict disease risk in other populations. Previous studies have used either training data from European samples in large sample size or training data from the target population in small sample size, but not both. Here, we introduce a multiethnic polygenic risk score that combines training data from European samples and training data from the target population. We applied this approach to predict type 2 diabetes (T2D) in a Latino cohort using both publicly available European summary statistics in large sample size (Neff  = 40k) and Latino training data in small sample size (Neff  = 8k). Here, we attained a >70% relative improvement in prediction accuracy (from R2  = 0.027 to 0.047) compared to methods that use only one source of training data, consistent with large relative improvements in simulations. We observed a systematically lower load of T2D risk alleles in Latino individuals with more European ancestry, which could be explained by polygenic selection in ancestral European and/or Native American populations. We predict T2D in a South Asian UK Biobank cohort using European (Neff  = 40k) and South Asian (Neff  = 16k) training data and attained a >70% relative improvement in prediction accuracy, and application to predict height in an African UK Biobank cohort using European (N = 113k) and African (N = 2k) training data attained a 30% relative improvement. Our work reduces the gap in polygenic risk prediction accuracy between European and non-European target populations.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00167562&limit=30&person=true&page=4&respub-action=search.html