Imperial College London

Dr Jonathan P. Eastwood

Faculty of Natural SciencesDepartment of Physics

Reader in Space Physics
 
 
 
//

Contact

 

+44 (0)20 7594 8101jonathan.eastwood Website

 
 
//

Location

 

6M63Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

189 results found

LaMoury AT, Hietala H, Plaschke F, Vuorinen L, Eastwood JPet al., 2021, Solar Wind Control of Magnetosheath Jet Formation and Propagation to the Magnetopause, Journal of Geophysical Research: Space Physics, ISSN: 2169-9380

Journal article

Desai R, Eastwood J, Horne R, Allison H, Allanson O, Watt C, Eggington J, Glauert S, Meredith N, Archer M, Staples F, Mejnertsen L, Tong J, Chittenden Jet al., 2021, Drift orbit bifurcations and cross-field transport in the outer radiation belt: global MHD and integrated test-particle simulations, Journal of Geophysical Research: Space Physics, ISSN: 2169-9380

Energetic particle fluxes in the outer magnetosphere present a significant challenge to modellingefforts as they can vary by orders of magnitude in response to solar wind driving conditions. In thisarticle, we demonstrate the ability to propagate test particles through global MHD simulations to ahigh level of precision and use this to map the cross-field radial transport associated with relativisticelectrons undergoing drift orbit bifurcations (DOBs). The simulations predict DOBs primarily occurwithin an Earth radius of the magnetopause loss cone and appears significantly different for southwardand northward interplanetary magnetic field orientations. The changes to the second invariant areshown to manifest as a dropout in particle fluxes with pitch angles close to 90◦and indicate DOBsare a cause of butterfly pitch angle distributions within the night-time sector. The convective electricfield, not included in previous DOB studies, is found to have a significant effect on the resultant longterm transport, and losses to the magnetopause and atmosphere are identified as a potential methodfor incorporating DOBs within Fokker-Planck transport models.

Journal article

Desai RT, Freeman M, Eastwood J, Eggington J, Archer M, Shprits Y, Meredith N, Staples F, Ian R, Hietala H, Mejnertsen L, Chittenden J, Horne Ret al., 2021, Interplanetary shock-induced magnetopause motion: Comparison between theory and global magnetohydrodynamic simulations, Geophysical Research Letters, Vol: 48, Pages: 1-11, ISSN: 0094-8276

The magnetopause marks the outer edge of the Earth’s magnetosphere and a distinct boundary between solar wind and magnetospheric plasma populations. In this letter, we use global magneto-hydrodynamic simulations to examine the response of the terrestrial magnetopause to fast-forward interplanetary shocks of various strengths and compare to theoretical predictions. The theory and simulations indicate the magnetopause response can be characterised by three distinct phases; an initial acceleration as inertial forces are overcome, a rapid compressive phase comprising the majority of the distance travelled, and large-scale damped oscillations with amplitudes of the order of an Earth radius. The two approaches agree in predicting subsolar magnetopause oscillations with frequencies2–13 mHz but the simulations notably predict larger amplitudes and weaker damping rates. This phenomenon is of high relevance to space weather forecasting and provides a possible explanation for magnetopause oscillations observed following the large interplanetary shocks of August 1972 and March 1991.

Journal article

Laker R, Horbury TS, Bale SD, Matteini L, Woolley T, Woodham LD, Stawarz JE, Davies EE, Eastwood JP, Owens MJ, O'Brien H, Evans V, Angelini V, Richter I, Heyner D, Owen CJ, Louarn P, Fedorov Aet al., 2021, Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows, ASTRONOMY & ASTROPHYSICS, Vol: 652, ISSN: 0004-6361

Journal article

Laker R, Horbury TS, Bale SD, Matteini L, Woolley T, Woodham LD, Stawarz JE, Davies EE, Eastwood JP, Owens MJ, OBrien H, Evans V, Angelini V, Richter I, Heyner D, Owen CJ, Louarn P, Fedorov Aet al., 2021, Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows, Astronomy & Astrophysics, Vol: 652, Pages: A105-A105, ISSN: 0004-6361

<jats:p><jats:italic>Context.</jats:italic> The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously.</jats:p><jats:p><jats:italic>Aims.</jats:italic> We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude.</jats:p><jats:p><jats:italic>Methods.</jats:italic> We visualise the sector structure of the inner heliosphere by ballistically mapping the polarity and solar wind speed from several spacecraft onto the Sun’s source surface. We then assess the HCS morphology and orientation with the in situ data and compare this with a predicted HCS shape.</jats:p><jats:p><jats:italic>Results.</jats:italic> We resolve ripples in the HCS on scales of a few degrees in longitude and latitude, finding that the local orientations of sector boundaries were broadly consistent with the shape of the HCS but were steepened with respect to a modelled HCS at the Sun. We investigate how several CIRs varied with latitude, finding evidence for the compression region affecting slow solar wind outside the latitude extent of the faster stream. We also identified several transient structures associated with HCS crossings and speculate that one such transient may have disrupted the local HCS orientation up to five days after its passage.</jats:p><jats:p><jats:italic>Conclusions.</jats:italic> We have shown that the solar wind structure varies significantly with latitude, with this constellation providing context for solar wind measurements that would not be possible with a single spacecraft. These measurement

Journal article

Fargette N, Lavraud B, Rouillard A, Eastwood JP, Bale SD, Phan T, Øieroset M, Halekas JS, Kasper J, Berthomier M, Case AW, Korreck KE, Larson DE, Louarn P, Malaspina D, Pulupa M, Stevens ML, Whittlesey PLet al., 2021, Magnetic increases with central current sheets: Observations with Parker Solar Probe, Astronomy & Astrophysics, Vol: 650, Pages: 1-12, ISSN: 0004-6361

Aims. We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak intheir magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth’smagnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements.Methods. In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2,2018 and the other was observed during a heliospheric current sheet crossing on November 13, 2018. They both show the presenceof a central current sheet with a visible ion jet and general characteristics consistent with the occurrence of magnetic reconnection.We then performed a survey of PSP data from encounters 1 to 4 and find 18 additional events presenting an increase in the magneticfield magnitude of over 30% and a central current sheet. We performed a statistical study on the 20 "magnetic increases with centralcurrent sheet" (MICCS), with 13 observed in the regular slow solar wind with a constant polarity (i.e., identical strahl direction), and7 which were specifically observed near a heliospheric current sheet (HCS) crossing.Results. We analyze and discuss the general properties of the structures, including the duration, location, amplitude, and magnetictopology, as well as the characteristics of their central current sheet. We find that the latter has a preferential orientation in the TNplane of the RTN frame. We also find no significant change in the dust impact rate in the vicinity of the MICCS under study, leadingus to conclude that dust probably plays no role in the MICCS formation and evolution. Our findings are overall consistent with adouble flux tube-configuration that would result from initially distinct flux tubes which interact during solar wind propagation.

Journal article

Phan TD, Lavraud B S J, Halekas, Øieroset M, Drake JF, Eastwood JP, Shay MA, Bale SD, Larson D, Livi R, Whittlesey PL, Rahmati A, Pulupa M, McManus MD, Verniero JL, Bonnell JW, Stevens M, Case AWet al., 2021, Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet, Astronomy & Astrophysics, Vol: 650, Pages: 1-14, ISSN: 0004-6361

During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale Heliospheric Current Sheet (HCS)multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the commondetections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during Encounters1, 4 and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts,PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic fieldlines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent withthe reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests thatreconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossingsof the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solarradii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is muchthicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absenceof reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which areassociated with ‘switchbacks’. Thus, the PSP findings suggest that large-scale dynamics either locally in the solar wind or within thecoronal source of the HCS (at the tip of helmet streamers) plays a critical role in triggering reconnection onset.

Journal article

Robertson SL, Eastwood JP, Stawarz JE, Hietala H, Phan TD, Lavraud B, Burch JL, Giles B, Gershman DJ, Torbert R, Lindqvist P, Ergun RE, Russell CT, Strangeway RJet al., 2021, Electron trapping in magnetic mirror structures at the edge of magnetopause flux ropes, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-17, ISSN: 2169-9380

Flux ropes are a proposed site for particle energization during magnetic reconnection, with several mechanisms proposed. Here, Magnetospheric Multiscale mission observations of magnetic mirror structures on the edge of two ion‐scale magnetopause flux ropes are presented. Donut‐shaped features in the electron pitch angle distributions provide evidence for electron trapping in the structures. Furthermore, both events show trapping with extended 3D structure along the body of the flux rope. Potential formation mechanisms, such as the magnetic mirror instability, are examined and the evolutionary states of the structures are compared. Pressure and force analysis suggest that such structures could provide an important electron acceleration mechanism for magnetopause flux ropes, and for magnetic reconnection more generally.

Journal article

Hapgood M, Angling MJ, Attrill G, Bisi M, Cannon PS, Dyer C, Eastwood JP, Elvidge S, Gibbs M, Harrison RA, Hord C, Horne RB, Jackson DR, Jones B, Machin S, Mitchell CN, Preston J, Rees J, Rogers NC, Routledge G, Ryden K, Tanner R, Thomson AWP, Wild JA, Willis Met al., 2021, Development of space weather reasonable worst‐case scenarios for the UK national risk assessment, Space Weather, Vol: 19, Pages: 1-32, ISSN: 1542-7390

Severe space weather was identified as a risk to the UK in 2010 as part of a wider review of natural hazards triggered by the societal disruption caused by the eruption of the Eyjafjallajökull volcano in April of that year. To support further risk assessment by government officials, and at their request, we developed a set of reasonable worst‐case scenarios and first published them as a technical report in 2012 (current version published in 2020). Each scenario focused on a space weather environment that could disrupt a particular national infrastructure such as electric power or satellites, thus, enabling officials to explore the resilience of that infrastructure against severe space weather through discussions with relevant experts from other parts of government and with the operators of that infrastructure. This approach also encouraged us to focus on the environmental features that are key to generating adverse impacts. In this paper, we outline the scientific evidence that we have used to develop these scenarios, and the refinements made to them as new evidence emerged. We show how these scenarios are also considered as an ensemble so that government officials can prepare for a severe space weather event, during which many or all of the different scenarios will materialize. Finally, we note that this ensemble also needs to include insights into how public behavior will play out during a severe space weather event and hence the importance of providing robust, evidence‐based information on space weather and its adverse impacts.

Journal article

Stawarz JE, Matteini L, Parashar TN, Franci L, Eastwood JP, Gonzalez CA, Gingell IL, Burch JL, Ergun RE, Ahmadi N, Giles BL, Gershman DJ, Le Contel O, Lindqvist P, Russell CT, Strangeway RJ, Torbert RBet al., 2021, Comparative analysis of the various generalized Ohm's law terms in magnetosheath turbulence as observed by magnetospheric multiscale, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-14, ISSN: 2169-9380

Decomposing the electric field (E) into the contributions from generalized Ohm's law provides key insight into both nonlinear and dissipative dynamics across the full range of scales within a plasma. Using high‐resolution, multi‐spacecraft measurements of three intervals in Earth's magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm's law, as well as the impact of a finite electron mass, on the turbulent E spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to E over the accessible length scales, which extend to scales smaller than the electron inertial length at the greatest extent, with the Hall and electron pressure terms dominating at sub‐ion scales. The strength of the non‐ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti‐alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents in the turbulence. The relative contribution of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping E for the intervals examined in this study. Overall, the sum of the Ohm's law terms and measured E agree to within ∼ 20% across the observable scales. These results both confirm general expectations about the behavior of E in turbulent plasmas and highlight features that should be explored further theoretically.

Journal article

Eastwood JP, Goldman M, Phan TD, Stawarz JE, Cassak PA, Drake JF, Newman D, Lavraud B, Shay MA, Ergun RE, Burch JL, Gershman DJ, Giles BL, Lindqvist PA, Torbert RB, Strangeway RJ, Russell CTet al., 2020, Energy flux densities near the electron dissipation region in asymmetric magnetopause reconnection, Physical Review Letters, Vol: 125, Pages: 1-6, ISSN: 0031-9007

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

Journal article

Goldman MV, Newman DL, Eastwood JP, Lapenta Get al., 2020, Multibeam energy moments of multibeam particle velocity distributions, Journal of Geophysical Research: Space Physics, Vol: 125, Pages: 1-19, ISSN: 2169-9380

High‐resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multiscale Mission and in reconnection simulations. Commonly used standard velocity moments assume a single mean‐flow velocity for the entire distribution. This can lead to counterintuitive results for a multibeam f(v). An example is the standard thermal energy density moment (at a given space‐time point) of a pair of equal and opposite cold particle beams. This standard moment is nonzero even though each beam has zero thermal energy density. By contrast, a multibeam moment of two or more cold beams at a given position and time has no thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences, and apply them to an f(v) which is a sum of tri‐Maxwellians. Both standard and multibeam energy moments have coherent and incoherent pieces. Examples of incoherent moments are the thermal energy density, the pressure, and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the ram pressure, and the bulk kinetic energy flux. The difference between a standard incoherent moment and its multibeam counterpart will be defined as the “pseudothermal part” of the standard moment. The sum of a pair of corresponding coherent and incoherent moments is the undecomposed moment. Undecomposed standard moments are always equal to the corresponding undecomposed multibeam moments.

Journal article

Magnes W, Hillenmaier O, Auster H-U, Brown P, Kraft S, Seon J, Delva M, Valavanoglou A, Leitner S, Fischer D, Berghofer G, Narita Y, Plaschke F, Volwerk M, Wilfinger J, Strauch C, Ludwig J, Constantinescu D, Fornacon K-H, Gebauer K, Hercik D, Richter I, Eastwood JP, Luntama JP, Hilgers A, Heil M, Na GW, Lee CHet al., 2020, Space weather magnetometer aboard GEO-KOMPSAT-2A, Space Science Reviews, Vol: 216, Pages: 1-36, ISSN: 0038-6308

The South Korean meteorological and environmental satellite GEO-KOMPSAT-2A (GK-2A) was launched into geostationary orbit at 128.2∘ East on 4 December 2018. The space weather observation aboard GK-2A is performed by the Korea Space Environment Monitor. It consists of three particle detectors, a charging monitor and a four-sensor Service Oriented Spacecraft Magnetometer (SOSMAG).The magnetometer design aims for avoiding strict magnetic cleanliness requirements for the hosting spacecraft and an automated on-board correction of the dynamic stray fields which are generated by the spacecraft. This is achieved through the use of two science grade fluxgate sensors on an approximately one meter long boom and two additional magnetoresistance sensors mounted within the spacecraft body.This paper describes the instrument design, discusses the ground calibration methods and results, presents the post-launch correction and calibration achievements based on the data which were acquired during the first year in orbit and demonstrates the in-flight performance of SOSMAG with two science cases.The dynamic stray fields from the GK-2A spacecraft, which was built without specific magnetic cleanliness considerations, are reduced up to a maximum factor of 35. The magnitude of the largest remnant field from an active spacecraft disturber is 2.0 nT. Due to a daily shadowing of the SOSMAG boom, sensor intrinsic offset oscillations with a periodicity up to 60 minutes and peak-to-peak values up to 5 nT remain in the corrected data product.The comparison of the cleaned SOSMAG data with the Tsyganenko 2004 magnetic field model and the magnetic field data from the Magnetospheric Multiscale mission demonstrates that the offset error is less than the required 5 nT for all three components and that the drift of the offsets over 10 months is less than 7 nT.Future work will include a further reduction of the remaining artefacts in the final data product with the focus on lessening the temperature driv

Journal article

Barnes D, Davies JA, Harrison RA, Byrne JP, Perry CH, Bothmer V, Eastwood JP, Gallagher PT, Kilpua EKJ, Möstl C, Rodriguez L, Rouillard AP, Odstrčil Det al., 2020, CMEs in the heliosphere: III. a statistical analysis of the kinematic properties derived from stereoscopic geometrical modelling techniques applied to CMEs detected in the heliosphere from 2008 to 2014 by STEREO/HI-1, Solar Physics: a journal for solar and solar-stellar research and the study of solar terrestrial physics, Vol: 295, Pages: 1-25, ISSN: 0038-0938

We present an analysis of coronal mass ejections (CMEs) observed by the Heliospheric Imagers (HIs) onboard NASA’s Solar Terrestrial Relations Observatory (STEREO) spacecraft. Between August 2008 and April 2014 we identify 273 CMEs that are observed simultaneously, by the HIs on both spacecraft. For each CME, we track the observed leading edge, as a function of time, from both vantage points, and apply the Stereoscopic Self-Similar Expansion (SSSE) technique to infer their propagation throughout the inner heliosphere. The technique is unable to accurately locate CMEs when their observed leading edge passes between the spacecraft; however, we are able to successfully apply the technique to 151, most of which occur once the spacecraft-separation angle exceeds 180∘, during solar maximum. We find that using a small half-width to fit the CME can result in inferred acceleration to unphysically high velocities and that using a larger half-width can fail to accurately locate the CMEs close to the Sun because the method does not account for CME over-expansion in this region. Observed velocities from SSSE are found to agree well with single-spacecraft (SSEF) analysis techniques applied to the same events. CME propagation directions derived from SSSE and SSEF analysis agree poorly because of known limitations present in the latter.

Journal article

Horbury TS, OBrien H, Carrasco Blazquez I, Bendyk M, Brown P, Hudson R, Evans V, Oddy TM, Carr CM, Beek TJ, Cupido E, Bhattacharya S, Dominguez J-A, Matthews L, Myklebust VR, Whiteside B, Bale SD, Baumjohann W, Burgess D, Carbone V, Cargill P, Eastwood J, Erdös G, Fletcher L, Forsyth R, Giacalone J, Glassmeier K-H, Goldstein ML, Hoeksema T, Lockwood M, Magnes W, Maksimovic M, Marsch E, Matthaeus WH, Murphy N, Nakariakov VM, Owen CJ, Owens M, Rodriguez-Pacheco J, Richter I, Riley P, Russell CT, Schwartz S, Vainio R, Velli M, Vennerstrom S, Walsh R, Wimmer-Schweingruber RF, Zank G, Müller D, Zouganelis I, Walsh APet al., 2020, The Solar Orbiter magnetometer, Astronomy & Astrophysics, Vol: 642, Pages: A9-A9, ISSN: 0004-6361

The magnetometer instrument on the Solar Orbiter mission is designed to measure the magnetic field local to the spacecraft continuously for the entire mission duration. The need to characterise not only the background magnetic field but also its variations on scales from far above to well below the proton gyroscale result in challenging requirements on stability, precision, and noise, as well as magnetic and operational limitations on both the spacecraft and other instruments. The challenging vibration and thermal environment has led to significant development of the mechanical sensor design. The overall instrument design, performance, data products, and operational strategy are described.

Journal article

Zouganelis I, 2020, The Solar Orbiter Science Activity Plan: translating solar and heliospheric physics questions into action, Astronomy & Astrophysics, Vol: 642, Pages: 1-19, ISSN: 0004-6361

Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, w

Journal article

Mihailescu AT, Desai R, Shebanits O, Haythornthwaite R, Wellbrock A, Coates A, Eastwood J, Waite JHet al., 2020, Spatial variations of low mass negative ions in Titan's upper atmosphere, The Planetary Science Journal, Vol: 1, Pages: 1-8, ISSN: 2632-3338

Observations with Cassini’s Electron Spectrometer discovered negative ions in Titan’s ionosphere,at altitudes between 1400 and 950 km. Within the broad mass distribution extending up to severalt housand amu, two distinct peaks were identified at 25.8-26.0 and 49.0-50.1 amu/q, corresponding to the carbon chain anions CN−and/orC2H−for the first peak and C3N−and/orC4H−for the second peak. In this study we present the spatial distribution of these low mass negative ions from 28 Titanflybys with favourable observations between 26 October 2004 and 22 May 2012. We report a trend of lower densities on the night side and increased densities up to twice as high on the day side at small solar zenith angles. To further understand this trend, we compare the negative ion densities to the total electron density measured by Cassini’s Langmuir Probe. We find the low mass negative ion density and the electron density to be proportional to each other on the dayside, but independent of each other on the night side. This indicates photochemical processes and is in agreement with the primary production route for the low mass negative ions being initiated by dissociative reactions with suprathermal electron populations produced by photoionisation. We also find the ratio ofCN−/C2H−toC3N−/C4H−highly constrained on the day-side, in agreement with this production channel, but notably displays large variations on the nightside.

Journal article

AkhavanTafti M, Palmroth M, Slavin JA, Battarbee M, Ganse U, Grandin M, Le G, Gershman DJ, Eastwood JP, Stawarz JEet al., 2020, Comparative analysis of the vlasiator simulations and MMS observations of multiple X‐line reconnection and flux transfer events, Journal of Geophysical Research: Space Physics, Vol: 125, Pages: 1-22, ISSN: 2169-9380

The Vlasiator hybrid‐Vlasov code was developed to investigate global magnetospheric dynamics at ion‐kinetic scales. Here, we focus on the role of magnetic reconnection in the formation and evolution of the magnetic islands at the low‐latitude magnetopause, under southward interplanetary magnetic field (IMF) conditions. The simulation results indicate that: 1) the magnetic reconnection ion kinetics, including the Earthward‐pointing Larmor electric field on the magnetospheric‐side of an X‐point and anisotropic ion distributions, are well‐captured by Vlasiator, thus enabling the study of reconnection‐driven magnetic island evolution processes, 2) magnetic islands evolve due to continuous reconnection at adjacent X‐points, ‘coalescence’ which refers to the merging of neighboring islands to create a larger island, ‘erosion’ during which an island loses magnetic flux due to reconnection, and ‘division’ which involves the splitting of an island into smaller islands, and 3) continuous reconnection at adjacent X‐points is the dominant source of magnetic flux and plasma to the outer layers of magnetic islands resulting in cross‐sectional growth rates up to +0.3 RE2/min. The simulation results are compared to the Magnetospheric Multiscale (MMS) measurements of a chain of ion‐scale flux transfer events (FTEs) sandwiched between two dominant X‐lines. The MMS measurements similarly reveal: 1) anisotropic ion populations, and 2) normalized reconnection rate ~0.18, in agreement with theory and the Vlasiator predictions. Based on the simulation results and the MMS measurements, it is estimated that the observed ion‐scale FTEs may grow Earth‐sized within ~10 minutes, which is comparable to the average transport time for FTEs formed in the subsolar region to the high‐latitude magnetopause. Future simulations shall revisit reconnection‐driven island evolution processes with improved spatial resolutions.

Journal article

Eggington JWB, Eastwood JP, Mejnertsen L, Desai RT, Chittenden JPet al., 2020, Dipole tilt effect on magnetopause reconnection and the steady‐state magnetosphere‐ionosphere system: global MHD simulation, Journal of Geophysical Research: Space Physics, Vol: 125, Pages: 1-17, ISSN: 2169-9380

The Earth’s dipole tilt angle changes both diurnally and seasonally and introduces numerous variabilities in the coupled magnetosphere‐ionosphere system. By altering the location and intensity of magnetic reconnection, the dipole tilt influences convection on a global scale. However, due to the nonlinear nature of the system, various other effects like dipole rotation, varying IMF orientation and non‐uniform ionospheric conductance can smear tilt effects arising purely from changes in coupling with the solar wind. To elucidate the underlying tilt angle‐dependence, we perform MHD simulations of the steady‐state magnetosphere‐ionosphere system under purely southward IMF conditions for tilt angles from 0°‐90°. We identify the location of the magnetic separator in each case, and find that an increasing tilt angle shifts the 3‐D X‐line southward on the magnetopause due to changes in magnetic shear angle. The separator is highly unsteady above 50° tilt angle, characteristic of regular FTE generation on the magnetopause. The reconnection rate drops as the tilt angle becomes large, but remains continuous across the dayside such that the magnetosphere is open even for 90°. These trends map down to the ionosphere, with the polar cap contracting as the tilt angle increases, and region‐I field‐aligned current (FAC) migrating to higher latitudes with changing morphology. The tilt introduces a north‐south asymmetry in magnetospheric convection, thus driving more FAC in the northern (sunward‐facing) hemisphere for large tilt angles than in the south independent of conductance. These results highlight the strong sensitivity to onset time in the potential impact of a severe space weather event.

Journal article

Tilquin H, Eastwood JP, Phan TD, 2020, Solar wind reconnection exhausts in the inner heliosphere observed by helios and detected via machine learning, The Astrophysical Journal: an international review of astronomy and astronomical physics, Vol: 895, Pages: 1-10, ISSN: 0004-637X

Reconnecting current sheets in the solar wind play an important role in the dynamics of the heliosphere and offer an opportunity to study magnetic reconnection exhausts under a wide variety of inflow and magnetic shear conditions. However, progress in understanding reconnection can be frustrated by the difficulty of finding events in long time-series data. Here we describe a new method to detect magnetic reconnection events in the solar wind based on machine learning, and apply it to Helios data in the inner heliosphere. The method searches for known solar wind reconnection exhaust features, and parameters in the algorithm are optimized to maximize the Matthews Correlation Coefficient using a training set of events and non-events. Applied to the whole Helios data set, the trained algorithm generated a candidate set of events that were subsequently verified by hand, resulting in a database of 88 events. This approach offers a significant reduction in construction time for event databases compared to purely manual approaches. The database contains events covering a range of heliospheric distances from ~0.3 to ~1 au, and a wide variety of magnetic shear angles, but is limited by the relatively coarse time resolution of the Helios data. Analysis of these events suggests that proton heating by reconnection in the inner heliosphere depends on the available magnetic energy in a manner consistent with observations in other regimes such as at the Earth's magnetopause, suggesting this may be a universal feature of reconnection.

Journal article

Lavraud B, Fargette N, Réville V, Szabo A, Huang J, Rouillard AP, Viall N, Phan TD, Kasper JC, Bale SD, Berthomier M, Bonnell JW, Case AW, Dudok de Wit T, Eastwood JP, Génot V, Goetz K, Griton LS, Halekas JS, Harvey P, Kieokaew R, Klein KG, Korreck KE, Kouloumvakos A, Larson DE, Lavarra M, Livi R, Louarn P, MacDowall RJ, Maksimovic M, Malaspina D, Nieves-Chinchilla T, Pinto RF, Poirier N, Pulupa M, Raouafi NE, Stevens ML, Toledo-Redondo S, Whittlesey PLet al., 2020, The heliospheric current sheet and plasma sheet during Parker Solar Probe’s first orbit, Letters of the Astrophysical Journal, Vol: 894, Pages: 1-8, ISSN: 2041-8205

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe's (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Sun, (2) the density enhancements are just about twice that in the surrounding regions, suggesting mixing of plasmas from each side of the HCS, (3) the velocity changes at the main boundaries are either correlated or anticorrelated with magnetic field changes, consistent with magnetic reconnection, (4) there often exists a layer of disconnected magnetic field just outside the high-density regions, in agreement with a reconnected topology, (5) while a few cases consist of short-lived density and velocity changes, compatible with short-duration reconnection exhausts, most events are much longer and show the presence of flux ropes interleaved with higher-β regions. These findings are consistent with the transient release of density blobs and flux ropes through sequential magnetic reconnection at the tip of the helmet streamer. The data also demonstrate that, at least during PSP's first orbit, the only structure that may be defined as the HPS is the density structure that results from magnetic reconnection, and its byproducts, likely released near the tip of the helmet streamer.

Journal article

Adhikari S, Shay MA, Parashar TN, Pyakurel PS, Matthaeus WH, Godzieba D, Stawarz JE, Eastwood JP, Dahlin JTet al., 2020, Reconnection from a turbulence perspective, Physics of Plasmas, Vol: 27, Pages: 1-10, ISSN: 1070-664X

The spectral properties associated with laminar, anti-parallel reconnection are examined using a 2.5D kinetic particle in cell simulation. Both the reconnection rate and the energy spectrum exhibit three distinct phases: an initiation phase where the reconnection rate grows, a quasi-steady phase, and a declining phase where both the reconnection rate and the energy spectrum decrease. During the steady phase, the energy spectrum exhibits approximately a double power law behavior, with a slope near −5/3 at wave numbers smaller than the inverse ion inertial length and a slope steeper than −8/3 for larger wave numbers up to the inverse electron inertial length. This behavior is consistent with a Kolmogorov energy cascade and implies that laminar reconnection may fundamentally be an energy cascade process. Consistent with this idea is the fact that the reconnection rate exhibits a rough correlation with the energy spectrum at wave numbers near the inverse ion inertial length. The 2D spectrum is strongly anisotropic with most energy associated with the wave vector direction normal to the current sheet. Reconnection acts to isotropize the energy spectrum, reducing the Shebalin angle from an initial value of 70° to about 48° (nearly isotropic) by the end of the simulation. The distribution of energy over length scales is further analyzed by dividing the domain into spatial subregions and employing structure functions.

Journal article

Fargette N, Lavraud B, Øieroset M, Phan TD, ToledoRedondo S, Kieokaew R, Jacquey C, Fuselier SA, Trattner KJ, Petrinec S, Hasegawa H, Garnier P, Génot V, Lenouvel Q, Fadanelli S, Penou E, Sauvaud J, Avanov DLA, Burch J, Chandler MO, Coffey VN, Dorelli J, Eastwood JP, Farrugia CJ, Gershman DJ, Giles BL, Grigorenko E, Moore TE, Paterson WR, Pollock C, Saito Y, Schiff C, Smith SEet al., 2020, On the ubiquity of magnetic reconnection inside flux transfer event‐like structures at the earth's magnetopause, Geophysical Research Letters, Vol: 47, Pages: 1-9, ISSN: 0094-8276

Flux transfer events (FTEs) are transient phenomena frequently observed at the Earth's magnetopause. Their usual interpretation is a flux rope moving away from the reconnection region. However, the Magnetospheric Multiscale Mission revealed that magnetic reconnection sometimes occurs inside these structures, questioning their flux rope configuration. Here we investigate 229 FTE‐type structures and find reconnection signatures inside 19% of them. We analyze their large‐scale magnetic topology using electron heat flux and find that it is significantly different across the FTE reconnecting current sheets, demonstrating that they are constituted of two magnetically disconnected structures. We also find that the interplanetary magnetic field (IMF) associated with reconnecting FTEs presents a strong By component. We discuss several formation mechanisms to explain these observations. In particular, the maximum magnetic shear model predicts that for large IMF By, two spatially distinct X lines coexist at the magnetopause. They can generate separate magnetic flux tubes that may become interlaced.

Journal article

Haaland S, Paschmann G, Øieroset M, Phan T, Hasegawa H, Fuselier S, Constantinescu V, Eriksson S, Trattner KJ, Fadanelli S, Tenfjord P, Lavraud B, Norgren C, Eastwood JP, Hietala H, Burch Jet al., 2020, Characteristics of the flank magnetopause: MMS results, Journal of Geophysical Research: Space Physics, Vol: 125, Pages: 1-13, ISSN: 2169-9380

We have used a large number of magnetopause crossings by the Magnetospheric Multi Spacecraft (MMS) mission to investigate macroscopic properties of this current sheet, with emphasis on the flanks of the magnetopause. Macroscopic features such as thickness, location and motion of the magnetopause were calculated as a function of local time sector. The results show that the flanks of the magnetopause are significantly thicker than the dayside magnetopause. Thicknesses vary from about 650 km near noon to over 1000 km near the terminator. Current densities varies in a similar manner, with average current densities around noon almost twice as high as near the terminator. We also find a dawn‐dusk asymmetry in many of the macroscopic parameters; The dawn magnetopause is thicker than at dusk, while the dusk flank is more dynamic, with a higher average normal velocity.

Journal article

Phan TD, Bale SD, Eastwood JP, Lavraud B, Drake JF, Oieroset M, Shay MA, Pulupa M, Stevens M, MacDowall RJ, Case AW, Larson D, Kasper J, Whittlesey P, Szabo A, Korreck KE, Bonnell JW, de Wit TD, Goetz K, Harvey PR, Horbury TS, Livi R, Malaspina D, Paulson K, Raouafi NE, Velli Met al., 2020, Parker solar probe In situ observations of magnetic reconnection exhausts during encounter 1, The Astrophysical Journal Supplement, Vol: 246, Pages: 34-34, ISSN: 0067-0049

Magnetic reconnection in current sheets converts magnetic energy into particle energy. The process may play an important role in the acceleration and heating of the solar wind close to the Sun. Observations from Parker Solar Probe (PSP) provide a new opportunity to study this problem, as it measures the solar wind at unprecedented close distances to the Sun. During the first orbit, PSP encountered a large number of current sheets in the solar wind through perihelion at 35.7 solar radii. We performed a comprehensive survey of these current sheets and found evidence for 21 reconnection exhausts. These exhausts were observed in heliospheric current sheets, coronal mass ejections, and regular solar wind. However, we find that the majority of current sheets encountered around perihelion, where the magnetic field was strongest and plasma β was lowest, were Alfvénic structures associated with bursty radial jets, and these current sheets did not appear to be undergoing local reconnection. We examined conditions around current sheets to address why some current sheets reconnected while others did not. A key difference appears to be the degree of plasma velocity shear across the current sheets: the median velocity shear for the 21 reconnection exhausts was 24% of the Alfvén velocity shear, whereas the median shear across 43 Alfvénic current sheets examined was 71% of the Alfvén velocity shear. This finding could suggest that large, albeit sub-Alfvénic, velocity shears suppress reconnection. An alternative interpretation is that the Alfvénic current sheets are isolated rotational discontinuities that do not undergo local reconnection.

Journal article

Horbury T, Woolley T, Laker R, Matteini L, Eastwood J, Bale SD, Velli M, Chandran BDG, Phan T, Raouafi NE, Goetz K, Harvey PR, Pulupa M, Klein KG, De Wit TD, Kasper JC, Korreck KE, Case AW, Stevens ML, Whittlesey P, Larson D, MacDowall RJ, Malaspina DM, Livi Ret al., 2020, Sharp Alfvenic impulses in the near-Sun solar wind, The Astrophysical Journal: an international review of astronomy and astronomical physics, Vol: 246, Pages: 1-8, ISSN: 0004-637X

Measurements of the near-Sun solar wind by Parker Solar Probe have revealed the presence of largenumbers of discrete Alfv ́enic impulses with an anti-Sunward sense of propagation. These are similarto those previously observed near 1 AU, in high speed streams over the Sun’s poles and at 60 solarradii. At 35 solar radii, however, they are typically shorter and sharper than seen elsewhere. Inaddition, these spikes occur in “patches” and there are also clear periods within the same stream whenthey do not occur; the timescale of these patches might be related to the rate at which the spacecraftmagnetic footpoint tracks across the coronal hole from which the plasma originated. While the velocityfluctuations associated with these spikes are typically under 100 km/s, due to the rather low Alfv ́enspeeds in the streams observed by the spacecraft to date, these are still associated with large angulardeflections of the magnetic field - and these deflections are not isotropic. These deflections do notappear to be related to the recently reported large scale, pro-rotation solar wind flow. Estimates ofthe size and shape of the spikes reveal high aspect ratio flow-aligned structures with a transverse scaleof≈104km. These events might be signatures of near-Sun impulsive reconnection events.

Journal article

Escoubet CP, Hwang K-J, Toledo-Redondo S, Turc L, Haaland SE, Aunai N, Dargent J, Eastwood JP, Fear RC, Fu H, Genestreti KJ, Graham DB, Khotyaintsev YV, Lapenta G, Lavraud B, Norgren C, Sibeck DG, Varsani A, Berchem J, Dimmock AP, Paschmann G, Dunlop M, Bogdanova YV, Roberts O, Laakso H, Masson A, Taylor MGGT, Kajdič P, Carr C, Dandouras I, Fazakerley A, Nakamura R, Burch JL, Giles BL, Pollock C, Russell CT, Torbert RBet al., 2020, Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause, Frontiers in Astronomy and Space Sciences, Vol: 6, Pages: 1-21, ISSN: 2296-987X

When the supersonic solar wind encounters the Earth's magnetosphere a shock, called bow shock, is formed and the plasma is decelerated and thermalized in the magnetosheath downstream from the shock. Sometimes, however, due to discontinuities in the solar wind, bow shock ripples or ionized dust clouds carried by the solar wind, high speed jets (HSJs) are observed in the magnetosheath. These HSJs have typically a Vx component larger than 200 km s−1 and their dynamic pressure can be a few times the solar wind dynamic pressure. They are typically observed downstream from the quasi-parallel bow shock and have a typical size around one Earth radius (RE) in XGSE. We use a conjunction of Cluster and MMS, crossing simultaneously the magnetopause, to study the characteristics of these HSJs and their impact on the magnetopause. Over 1 h 15 min interval in the magnetosheath, Cluster observed 21 HSJs. During the same period, MMS observed 12 HSJs and entered the magnetosphere several times. A jet was observed simultaneously by both MMS and Cluster and it is very likely that they were two distinct HSJs. This shows that HSJs are not localized into small regions but could span a region larger than 10 RE, especially when the quasi-parallel shock is covering the entire dayside magnetosphere under radial IMF. During this period, two and six magnetopause crossings were observed, respectively, on Cluster and MMS with a significant angle between the observation and the expected normal deduced from models. The angles observed range between from 11° up to 114°. One inbound magnetopause crossing observed by Cluster (magnetopause moving out at 142 km s−1) was observed simultaneous to an outbound magnetopause crossing observed by MMS (magnetopause moving in at −83 km s−1), showing that the magnetopause can have multiple local indentation places, most likely independent from each other. Under the continuous impacts of HSJs, the magnetopause is deformed significan

Journal article

Gingell I, Schwartz SJ, Eastwood JP, Stawarz JE, Burch JL, Ergun RE, Fuselier SA, Gershman DJ, Giles BL, Khotyaintsev YV, Lavraud B, Lindqvist P, Paterson WR, Phan TD, Russell CT, Strangeway RJ, Torbert RB, Wilder Fet al., 2020, Statistics of reconnecting current sheets in the transition region of earth's bow shock, Journal of Geophysical Research: Space Physics, Vol: 125, Pages: 1-14, ISSN: 2169-9380

We have conducted a comprehensive survey of burst mode observations of Earth's bow shock by the Magnetospheric Multiscale mission to identify and characterize current sheets associated with collisionless shocks, with a focus on those containing fast electron outflows, a likely signature of magnetic reconnection. The survey demonstrates that these thin current sheets are observed within the transition region of approximately 40% of shocks within the burst mode data set of Magnetospheric Multiscale. With only small apparent bias toward quasi‐parallel shock orientations and high Alfvén Mach numbers, the results suggest that reconnection at shocks is a universal process, occurring across all shock orientations and Mach numbers. On examining the distributions of current sheet properties, we find no correlation between distance from the shock, sheet width, or electron jet speed, though the relationship between electron and ion jet speed supports expectations of electron‐only reconnection in the region. Furthermore, we find that robust heating statistics are not separable from background fluctuations, and thus, the primary consequence of reconnection at shocks is in relaxing the topology of the disordered magnetic field in the transition region.

Journal article

Bale SD, Badman ST, Bonnell JW, Bowen TA, Burgess D, Case AW, Cattell CA, Chandran BDG, Chaston CC, Chen CHK, Drake JF, De Wit TD, Eastwood JP, Ergun RE, Farrell WM, Fong C, Goetz K, Goldstein M, Goodrich KA, Harvey PR, Horbury TS, Howes GG, Kasper JC, Kellogg PJ, Klimchuk JA, Korreck KE, Krasnoselskikh VV, Krucker S, Laker R, Larson DE, MacDowall RJ, Maksimovic M, Malaspina DM, Martinez-Oliveros J, McComas DJ, Meyer-Vernet N, Moncuquet M, Mozer FS, Phan TD, Pulupa M, Raouafi NE, Salem C, Stansby D, Stevens M, Szabo A, Velli M, Woolley T, Wygant JRet al., 2019, Highly structured slow solar wind emerging from an equatorial coronal hole, Nature, Vol: 576, Pages: 237-242, ISSN: 0028-0836

During the solar minimum, when the Sun is at its least active, the solar wind1,2 is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind3 of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain4; theories and observations suggest that they may originate at the tips of helmet streamers5,6, from interchange reconnection near coronal hole boundaries7,8, or within coronal holes with highly diverging magnetic fields9,10. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvén-wave turbulence11,12, heating by reconnection in nanoflares13, ion cyclotron wave heating14 and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe15 at 36 to 54 solar radii that show evidence of slow Alfvénic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities10,16 that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.

Journal article

Trenchi L, Coxon JC, Fear RC, Eastwood JP, Dunlop MW, Trattner KJ, Gershman DJ, Graham DB, Khotyaintsev Y, Lavraud Bet al., 2019, Signatures of magnetic separatrices at the borders of a crater flux transfer event connected to an active X‐line, Journal of Geophysical Research: Space Physics, Vol: 124, Pages: 8600-8616, ISSN: 2169-9380

In this paper, we present Magnetospheric Multiscale (MMS) observations of a flux transfer event (FTE) characterized by a clear signature in the magnetic field magnitude, which shows maximum at the center flanked by two depressions, detected during a period of stable southward interplanetary magnetic field. This class of FTEs are called “crater‐FTEs” and have been suggested to be connected with active reconnection X line. The MMS burst mode data allow the identification of intense fluctuations in the components of the electric field and electron velocity parallel to the magnetic field at the borders of the FTE, which are interpreted as signatures of the magnetic separatrices. In particular, the strong and persistent fluctuations of the parallel electron velocity at the borders of this crater‐FTE reported for the first time in this paper, sustain the field‐aligned current part of the Hall current system along the separatrix layer, and confirm that this FTE is connected with an active reconnection X line. Our observations suggest a stratification of particles inside the reconnection layer, where electrons are flowing toward the X line along the separatrix, are flowing away from the X line along the reconnected field lines adjacent to the separatrices, and more internally ions and electrons are flowing away from the X line with comparable velocities, forming the reconnection jets. This stratification of the reconnection layer forming the FTE, together with the reconnection jet at the trailing edge of the FTE, suggests clearly that this FTE is formed by the single X line generation mechanism.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00236001&limit=30&person=true